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Motivation CMAX++ Experiments

« Small state space - 3D (x, y, @). Model has no icy patches and

robot slips on ice
3D Mobile Robot Navigation Experiment
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» Success of robotic planning mostly in domains with accurate

models of robot and environment dynamics « CMAX fails to improve task performance across repetitions

» Requires strong assumptions on accuracy of the model

Inaccurately

» Hard to model dynamics in the wild - how do we use inaccurate

models and provably complete task? » Key Idea: CMAX++ maintains model-free Q-value estimates of e Lot CMAX++
inaccurately modeled transitions and uses them in a model-
* Naively using inaccurate models can result in task failure based planning procedure Icy Patch

* Does not require any updates to the model
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LGl ey * Requires weaker assumptions to guarantee task-completeness
Modeled transition

* Objectives:

- Provably complete task
in each repetition

« Our focus on repetitive tasks -
- iR

» Optimistic Model Assumption: Optimal value function using approximate model dynamics always underestimates the
optimal value under true dynamics at all states
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without any resets * E.g. Free-space assumption in robot navigation - Robot is never “pleasantly surprised” during execution
despite using inaccurate ] _ _ B 100 120 140 160 180 200
model * Theoretical Guarantees: CMAX++ is guaranteed to be task-complete in each repetition

« Large state space - 7D PR2 armagonfiguration. Object modeled

e Guaranteed to converge to optimal path as number of repetitions grow as light, arm can lift object only in certain configurations

- Improve task

perfo_rr_nance across Repetition— 1 5) 20
repetltlons Move to t = t+1 Steps Success Steps | Success Steps Success
CMAX 178+ 3.4 100% 13.6 £0.5 60% 15+0 20%
. If (s,, a,) is inaccurately CMAX++ 174+4.9 100% 14.2+ 3.3 100% 'f 10.8+0.1 | 100%
Prior Work A-CMAX I+ | 17.8+3.4 | 100% . 11.6+0.7 | 100% | 10.6+04 | 100%

modeled Model KNN | 40.6+7.3 | 100% | 12.8+1.3 | 100% || 124+1.4 | 100%

Q(St’ at) «— C(St’ at) + V(St+1) Model NN | 56 +£16.2 | 100% | 208.2+92.1 | 80% |37.5+20.1 | 40%
Q-learning | 172.4+75 | 100% 23.2+10.3 80% 10.2 +0.6 80%

» Updating (residual) dynamical models from executions

- Large number of samples, require access to resets, no WONEYI SN Using model and Q-values NS If Q-value is high, same behavior as CMAX

perfect model in model class state s, is not a action a, to get o _
goal S1 = f(Sp @) But if its low, allows planner to exploit

« Model-based planning with model-free learning [2,3] Advantages and Limitations

- Fine-tuning in inaccurately modeled regions, relies on prior . Exoloit i el deled t " thout | ina t
knowledge such as inaccuracies/demonstrations Adaptive-C MAX++ d;rr])aorlnig;accura ely modeled transitions without learning true

» Updating behavior of planner - CMAX [1]

Useful in domains where modeling true dynamics is intractable

« CMAX++ wastes executions estimating Q-values and /lacks goal-
driven behavior of CMAX - typical of model-free methods

* Key ldea: Adaptive-CMAX++ switches between CMAX and CMAX++

- Does not require updating model, no resets required,
provably task-complete

Requires weaker assumptions when compared to CMAX

Designing optimistic initial model requires domain knowledge

during execution to combine advantages of both * Infeasible to relax assumption without resorting to undirected
While Plan t | Execute . . . .
current state Sl 4 action to get e If value estimate following CMAX is not far from CMAX++, prefer Inaccurately modeled exploration methods
SOMERLEY using inaccurate model (USRS CMAX - goal driven. Else, prefer CMAX++ - optimal transition /

* Anytime-like: Goal-driven in early repetitions, Optimal in later

rep etltl ons [1] Vemula, A.; Oza, Y.; Bagnell, J.; and Likhachev, M. 2020. Planning and Execution using Inaccurate
) Models with Provable Guarantees. In Proceedings of Robotics: Science and Systems. Corvalis, Oregon,
Ifinaccurately « Executions required to estimate Q-values spread across repetitions p(s) = g(s;) + Q(sy, a) USA. doi:10.15607/RSS.2020. XVI.001.
Replan modeled Can be a severe | [21Lee, M. A ; Florensa, C.; Tremblay, J.; Ratliff, N. D.; Garg, A.; Ramos, F.; and Fox, D. 2020.
. . i . . " . : Guided Uncertainty-Aware Policy Optimization: Combining Learning and ModelBased
¢ - Given o Z %) Z Z Ay Z 1 where N is number of repetltlons. At time Step Al repetltlon ! underestimate Strategies for Sample-Efficient Policy Learning. CoRR abs/2005.10872. URL https://arxiv.org/
cos . bs/2005. 10872
« IfV, s)<aV, s.) - Execute CMAX action y
toa :arge CMAX ( t) — Y CMAX++( t ) [3] Lagrassa, A.; Lee, S.; and Kroemer, O. 2020. Learning skills to patch plans based on
vaiue e Else - Execute CMAX++ action inaccurate models. In 2020 IEEE International Conference on Intelligent Robots and Systems

(IROS).

Blog post: https://vvanirudh.github.io/blog/cmaxpp Code: https://github.com/vvanirudh/cmaxpp
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