

CMAX++: Leveraging Experience in Planning and Execution using Inaccurate Models

Anirudh Vemula (vemula@cmu.edu), J. Andrew Bagnell and Maxim Likhachev The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Carnegie Mellon University

Motivation

- Success of robotic planning mostly in domains with accurate models of robot and environment dynamics
- Hard to model dynamics in the wild how do we use inaccurate models and provably complete task?
- Naively using inaccurate models can result in task failure
- Our focus on repetitive tasks

Objectives:

- Provably complete task in each repetition without any resets despite using inaccurate model
- Improve task performance across repetitions

Prior Work

- Updating (residual) dynamical models from executions
- Large number of samples, require access to resets, no perfect model in model class
- Model-based planning with model-free learning [2,3]
- Fine-tuning in inaccurately modeled regions, relies on prior knowledge such as inaccuracies/demonstrations
- Updating behavior of planner CMAX [1]
 - Does not require updating model, no resets required, provably task-complete

CMAX++

- CMAX fails to improve task performance across repetitions
- · Requires strong assumptions on accuracy of the model
- **Key Idea**: CMAX++ maintains model-free Q-value estimates of inaccurately modeled transitions and uses them in a model-based planning procedure
- Does not require any updates to the model
- Requires weaker assumptions to guarantee task-completeness
- Optimistic Model Assumption: Optimal value function using approximate model dynamics always underestimates the optimal value under true dynamics at all states
- E.g. Free-space assumption in robot navigation Robot is never "pleasantly surprised" during execution
- Theoretical Guarantees: CMAX++ is guaranteed to be task-complete in each repetition

Inaccurately modeled

transition

 $p(s) = g(s_1) + Q(s_1, a)$

Can be a severe

underestimate

Adaptive-CMAX++

- CMAX++ wastes executions estimating Q-values and lacks goaldriven behavior of CMAX - typical of model-free methods
- **Key Idea**: Adaptive-CMAX++ switches between CMAX and CMAX++ during execution to combine advantages of both
- If value estimate following CMAX is not far from CMAX++, prefer CMAX - goal driven. Else, prefer CMAX++ - optimal
- Anytime-like: Goal-driven in early repetitions, Optimal in later repetitions
- Executions required to estimate Q-values spread across repetitions
- Given $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_N \geq 1$ where N is number of repetitions. At time step t in repetition i
 - If $V_{CMAX}(s_t) \le \alpha_i V_{CMAX++}(s_t)$ Execute CMAX action
 - Else Execute CMAX++ action

Experiments

accurately

• Small state space - 3D (x, y, θ) . Model has no icy patches and robot slips on ice

 Large state space - 7D PR2 arm configuration. Object modeled as light, arm can lift object only in certain configurations

$Repetition \rightarrow$	1		5		20	
	Steps	Success	Steps	Success	Steps	Success
CMAX	$\textbf{17.8} \pm \textbf{3.4}$	100%	13.6 ± 0.5	60%	15 ± 0	20%
CMAX++	$\textbf{17} \pm \textbf{4.9}$	100%	14.2 ± 3.3	100%	10.8 ± 0.1	100%
A-CMAX++	$\textbf{17.8} \pm \textbf{3.4}$	100%	11.6 ± 0.7	100%	10.6 ± 0.4	100%
Model KNN	40.6 ± 7.3	100%	12.8 ± 1.3	100%	12.4 ± 1.4	100%
Model NN	56 ± 16.2	100%	208.2 ± 92.1	80%	37.5 ± 20.1	40%
Q-learning	172.4 ± 75	100%	23.2 ± 10.3	80%	10.2 ± 0.6	80%
			<u> </u>			

Advantages and Limitations

- Exploit inaccurately modeled transitions without learning true dynamics
- Useful in domains where modeling true dynamics is intractable
- Requires weaker assumptions when compared to CMAX
- Designing optimistic initial model requires domain knowledge
- Infeasible to relax assumption without resorting to undirected exploration methods

[1] Vemula, A.; Oza, Y.; Bagnell, J.; and Likhachev, M. 2020. Planning and Execution using Inaccurate Models with Provable Guarantees. In Proceedings of Robotics: Science and Systems. Corvalis, Oregon, USA. doi:10.15607/RSS.2020. XVI.001.

[2] Lee, M. A.; Florensa, C.; Tremblay, J.; Ratliff, N. D.; Garg, A.; Ramos, F.; and Fox, D. 2020. Guided Uncertainty-Aware Policy Optimization: Combining Learning and ModelBased Strategies for Sample-Efficient Policy Learning. CoRR abs/2005.10872. URL https://arxiv.org/abs/2005.10872

[3] Lagrassa, A.; Lee, S.; and Kroemer, O. 2020. Learning skills to patch plans based on inaccurate models. In 2020 IEEE International Conference on Intelligent Robots and Systems (IROS).