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Research Focus: Navigation in Dynamic Environments

Dynamic Environments: Presence of other dynamic agents

Scripted dynamic agents 1 Unscripted dynamic agents 2
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Objective

Given a dynamic environment, a start location and a goal, find a

I safe,

I dynamically feasible,

I bounded cost suboptimal path for the robot
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Challenges

To navigate in dynamic environments, the robot needs to

1. quickly plan a path accounting for dynamic agents

2. have an accurate model of the dynamics of environment

In this thesis, we will tackle both challenges
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Path Planning

Start

Goal

Find a path for the robot that avoids collisions with static and
dynamic obstacles, and is dynamically feasible to execute

MS Speaking Qualifier Anirudh Vemula 6



Trajectory Prediction

Given the past trajectories of dynamic agents in the environment,
predict their future trajectories until a fixed time horizon
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Problem Statement

Assuming a perfect model of world dynamics exists, given a start
and goal configuration, find a path that is safe and feasible to

execute, with bounded cost suboptimality
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Past Work : Planning in Dynamic Environments

Start

Goal

Planning without
time dimension3

Incomplete

Start

Goal

wait

Safe Interval Path
Planning4

Wait in-place

RRT5

No optimality
guarantees
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Motivation

Low-D heuristics tend to be wrong in dynamic environments

Start

Goal

The solution path (green) is against heuristic

Hence, heuristic-based planners are extremely slow
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Adaptive Dimensionality Graph

Core Idea : Consider time dimension only in regions where there is
a potential dynamic obstacle collision. Plan in low-dimension

elsewhere.
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Example AD graph

Figure : Low-D: (x , y), High-D: (x , y , θ)6
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Extending to Planning in Dynamic Environments

State-spaces

I S ld : Only spatial variables e.g. (x , y)

I Shd : Spatio-temporal variables e.g. (x , y , t)

I Bound the time dimension in Shd by a upper bound T

Transition sets

I T ld : Transitions between states in S ld

I T hd : Transitions between states in Shd

I Collision with dynamic obstacle only checked in T hd
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Extending to Planning in Dynamic Environments

Projections

I Projection function λ : Shd → S ld

I Inverse projection function λ−1 is given by:

λ−1(X ld) = {X hd |λ(X hd) = X ld , td(X ld) ≤ t(X hd) ≤ T}

I We obtain td using a time-optimal Dijkstra search in G ld to
find the least time taken to reach any state from start

Adaptive transitions

I (X hd ,Y ld) ∈ T ad , if Y ld = λ(X hd)

I (X ld ,Y hd) ∈ T ad , if (X hd ,Y hd) ∈ T hd and X hd ∈ λ−1(X ld)
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Main Loop

PLANNING PHASE

TRACKING PHASE

Search in current AD graph 

to get path p

Search in the tunnel around p 

to get path t 

Construct high-D tunnel around p

If no path p is found, 

no feasible path exists. Exit

If cost(t) < cost(p), return t. Else, above.

If no path t is found, 

introduce/expand high-D region
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Main Loop : Start with G ad = G ld
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Main Loop : Construct High-D tunnel around path
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Main Loop : Add High-D region and search G ad

Start

Goal
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Main Loop : No collisions in High-D tunnel

Start

Goal
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Main Loop : Success

PLANNING PHASE

TRACKING PHASE

Search in current AD graph 

to get path p

Search in the tunnel around p 

to get path t 

Construct high-D tunnel around p

If no path p is found, 

no feasible path exists. Exit

If cost(t) <  cost(p), return t. Else, above.

If no path t is found, 

introduce/expand high-D region

Start

Goal
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Theoretical Properties

Theorem 1 : Completeness

If no path πG ad is found in planning phase, no collision-free, feasible
path exists that can reach goal from start within time T in Ghd

Theorem 2 : Bounded cost suboptimality

If a weighted A* is used for both planning and tracking phase,
then the cost of resulting path (if found) has cost no more than
εplan · εtrack · c(π∗

Ghd (XS ,XG ))
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3D Nonholonomic Robot

I Simulated 3D (x , y , θ) robot in randomly generated dynamic
environments

I Hence, Shd is a 4D-(x , y , θ, t) space. We chose S ld to be the
2D-(x , y) space

I Cost of a path is the time taken to execute the path

I We compare our performance against 4D-(x , y , θ, t) HCA*
with 2D-(x , y) Dijkstra heuristic
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Quantitative Results

Algorithm Number of Success Epsilon time (secs)
(Out of 50) (εplan · εtrack) mean std dev

Adaptive 41 1.1 6.7 0.8

HCA* 5 1.1 91.0 71.2

Adaptive 43 1.5 11.7 14.0

HCA* 21 1.5 70.3 86.7

Adaptive 46 2.0 18.5 26.6

HCA* 23 2.0 35.8 69.8

Table : Results on 50 environments with 30 dynamic obstacles.
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Discussion

I Path suggested by Low-D heuristic blocked by dynamic
obstacles, our approach outperforms baseline significantly

I Otherwise, we have comparable performance with baseline

Start

Goal

MS Speaking Qualifier Anirudh Vemula 25



Summary

PLANNING PHASE

TRACKING PHASE

Search in current AD graph 

to get path p

Search in the tunnel around p 

to get path t 

Construct high-D tunnel around p

If no path p is found, 

no feasible path exists. Exit

If cost(t) < cost(p), return t. Else, above.

If no path t is found, 

introduce/expand high-D region

Start

Goal
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Problem Statement

Given sensory information regarding the past trajectories of agents
in a dynamic environment, predict their future trajectories

In this work, we will focus on human crowds
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Cooperation in Crowds

Sparse7 Moderate8 Dense8

Humans navigate through crowds by adapting their trajectories to
those of other people in the vicinity

MS Speaking Qualifier Anirudh Vemula 29



Crowd interactions

Group behavior

Collision avoidance

Cooperative behavior

To capture such interactions, we need to model the joint
distribution of trajectories

But, a joint distribution model scales with the number of agents in
the crowd
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Past Work : Navigation in Human Crowds

Interacting Gaussian Processes3

Handcrafted potential term
Inverse Reinforcement Learning8

Scales poorly
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Notation

I f(i) : Trajectory of agent i , a sequence of (x , y) locations for
discrete time-steps 1 to T

I z
(i)
1:t : Observed locations of agent i at time-steps 1 to t

I z1:t : Observed locations of all agents

I f : Trajectories of all agents

I (vx)
(i)
t , (vy)

(i)
t : x- and y-velocity of agent i at time t

Note: We assume there are a fixed set of goals G in the
environment
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Joint Prediction Model

Independent model :

P(f|z1:t) =
N∏
i=1

P(f(i)|z(i)
1:t)

Interacting Gaussian processes (Trautman and Krause 2015) :

P(f|z1:t) =
1

Z
ψ(f(1), · · · , f(N))︸ ︷︷ ︸
Handcrafted potential

N∏
i=1

P(f(i)|z(i)
1:t)

Instead of handcrafted potential, we couple predictions f using
Occupancy Grids
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Occupancy Grids
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Scaling up using occupancy grids

Given observed part of trajectories z1:t ,

P(f|z1:t) =
∑
g

P(f|g, z1:t)P(g|z1:t)

=
∑
g

N∏
i=1

P(f(i)|O(i)
1:t , g

(i), z
(i)
1:t)︸ ︷︷ ︸

prediction

P(g(i)|z(i)
1:t)︸ ︷︷ ︸

inferring goal

where O
(i)
t is the occupancy grid of agent i at time t and g(i) is

the goal location of agent i .
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Training Local Interaction Model

For each goal g ∈ G , where G is the set of goals in the
environment we estimate the distribution P(vx|O, g) and
P(vy|O, g) using Gaussian Process regression

yv

xv

v

Goal (G)

Learn 

Occupancy grid (O)

from training data
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Goal Inference

P(f|z1:t) =
∑
g

N∏
i=1

P(f(i)|O(i)
1:t , g

(i), z
(i)
1:t)︸ ︷︷ ︸

prediction

P(g(i)|z(i)
1:t)︸ ︷︷ ︸

inferring goal

At inference time,

P(g(i)|z(i)
1:t) ∝ P(z

(i)
1:t |g

(i))P(g(i)) Bayes rule

∝ P((vx)
(i)
1:t |O

(i)
1:t , g

(i))P((vy)
(i)
1:t |O

(i)
1:t , g

(i))︸ ︷︷ ︸
From trained model
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Trajectory Prediction

P(f|z1:t) =
∑
g

N∏
i=1

P(f(i)|O(i)
1:t , g

(i), z
(i)
1:t)︸ ︷︷ ︸

prediction

P(g(i)|z(i)
1:t)︸ ︷︷ ︸

inferring goal

For each time-step t ′ > t, we sample from the predictive GP
distribution

P((vx)
(i)
t′ |O

(i)
t′ , g

(i), (vx)
(i)
1:t ,O

(i)
1:t)

P((vy)
(i)
t′ |O

(i)
t′ , g

(i), (vy)
(i)
1:t ,O

(i)
1:t)

to compute future locations ft′ and occupancy grids Ot′ for all
agents
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Trajectory Prediction

Observed trajectory

Predicted trajectory

Predict velocities and compute 

occupancy grids at each time-step
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Results: Learned Behaviors

Y

X

Collision avoidance

Cooperative behavior
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Qualitative Results

IGP Our approach
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Quantitative Results

Table : Prediction errors (in pixels) for IGP and our approach

Metric Prediction horizon (H) IGP Our Approach

Avg. Disp. Error

1 3.42 4.42
2 5.66 6.14
5 15.75 12.09

10 21.59 18.23
20 41.51 34.63

Final Disp. Error

1 3.42 4.42
2 7.12 7.78
5 23.18 19.77

10 38.75 28.31
20 67.41 54.2
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Summary
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Conclusion

In this thesis, we have successfully explored and answered the
following two questions:

1. Given a model of world dynamics, how to obtain safe, feasible
and bounded sub-optimal paths for robots in dynamic
environments? Path Planning with Adaptive Dimensionality

2. How do you model complex world dynamics such as
cooperative behavior in dynamic environments, specifically
human crowds? Occupancy grid-based joint modeling
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Future Work

Path Planning

I Verify the performance on a mobile robot in a scripted
dynamic environment

I Make planner incremental - reuse search tree from previous
iterations

I Account for uncertainty in the world dynamics model
predictions to obtain frequency of replanning
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Future Work

Modeling World Dynamics

I Account for static obstacles within the model

I Relax the assumption of fixed goals in the environment

I Local interaction assumption is not necessarily true. Attend to
important surrounding agents (we have recently submitted a
work in this direction)
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Thank you. Questions?

Publications:

1. Anirudh Vemula, Katharina Muelling, Jean Oh. Path Planning in Dynamic Environments with Adaptive

Dimensionality. SoCS 2016

2. Anirudh Vemula, Katharina Muelling, Jean Oh. Modeling Cooperative Navigation in Dense Human

Crowds. ICRA 2017

3. Anirudh Vemula, Katharina Muelling, Jean Oh. Social Attention: Modeling Attention in Human Crowds.

Submitted to CoRL 2017
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