
Intelligent Transportation System Workshop, COMSNETS 2015

Improving Public Transportation Through

Crowd-Sourcing
Anirudh Vemula, Nikhil Patil, Vivek Paharia, Aneesh Bansal, Megha Chaudhary,

Naveen Aggarwal, Divya Bansal, K. K. Ramakrishnan, Bhaskaran Raman

Abstract: Commuting on roads in densely populated

cities of the developing world is fraught with high delays

and uncertainties. Wide use of public transportation can

ease the load on the road infrastructure, but such use is

not convenient, partly due to the unpredictable nature. In

this work, our goal is to improve the usability of public

transportation, through better information. Such information

can lead to better planning and predictability for commuters.

We take a crowd-sourced approach where information about

transportation units as well as road conditions is crowd

sourced from commuters. The information is then processed

and made available to other commuters. In this context, this

paper presents a naming framework we have developed,

which will enable flexible and scalable content-driven data

gathering and dissemination. Based on a preliminary im

plementation of the framework, we present various field

experiment results which shed light on the practicality of

the proposed approach as well as on technical issues which

need further careful addressing.

I. INTRODUCTION AND MOTIVATION

Commuting on roads, especially in peak hours, is not

only unpleasant but also wasteful of time and fuel. While

this is true of most places in the world, it is especially

true in densely populated cities of the developing world

where the stress on road space is especially high. Use of

public transportation (buses, commuter trains) can alleviate

the situation, if only a large section of population were to

use it. But we currently are in a vicious cycle: most who can

afford private vehicles shy away from public transportation,

due to their poor usability and predictability; and this further

stresses the already stressed road infrastructure.

In this work, termed CARTS (Communication Assisted

Road Transportation Systems), we seek to improve the

usability of public transportation systems, primarily through

better availability of real-time information. Our hope is

that this will contribute to breaking the vicious cycle,

by providing better planned and more predictable public

transportation commutes.

Our approach is to crowd-source information and public

transportation units, as well as other relevant informa

tion such as real-time road conditions, from commuters

themselves. For this, we use commuters' smart-phones.

Information is crowd-sourced in an automated fashion (e.g.

speed of movement through GPS sensor) as well as through

manual input (e.g. "I have boarded bus number 356 now").

Subsequently, we disseminate the processed information to

interested cOlmnuters, to answer queries such as "When is

the next bus number 25 expected at my bus stop?", "When

can I expect to reach my destination by boarding that bus?".

In this paper, we make a beginning toward supporting the

above crowd-sourced information framework. We present

the design of a naming scheme (Sec. III) which supports

flexible and potentially scalable means of data gathering and

dissemination. The naming scheme enables content-driven

information collection and dissemination. We have a prelim

inary implementation of the crowd-sourced framework on

the Android platform. Prior to a pilot deployment, we have

collected several field measurements, results from which are

presented in Sec. IV. Our overall observations are that using

GPS connectivity in buses is not always reliable, likely due

to physical obstructions and surrounding people. We find

that bus-stop dwell times do not contribute significantly to

travel time. Finally, we also find that automated detection

of bus stops is not easy, as there is significant variability

along various dimensions: where exactly a bus stops, and

how long it stops, from one trip to another.

II. RELATED WORK

We now present related prior work which has looked at

crowd-sourced approaches for getting road traffic related

information.

VTrack [3] is a system which dynamically tracks location

of vehicles. The focus here is on lowering power consump

tion of the smart-phones involved, by using Wi-Fi based

positioning in place of GPS when possible. CTrack [4]

furthers this work by considering GSM cellular signal

based positioning as well. Nericell [2] develops techniques

to get information about road conditions (e.g. congested,

noisy) using smart-phone sensors. The work in [5] uses

GPS data to deduce information about road conditions, e.g.

congestion level in each road segment. The techniques in

the above works are complementary and orthogonal to our

goal of crowd-sourcing public transit information.

EasyTracker [1] deals with prediction of arrival time of a

transportation unit. It however assumes dedicated on-vehicle

sensors while our focus is on crowd-sourced information.

978-1-4799-8439-8/15/$31.00 ©2015 IEEE

Zhou et. al. [6] develop a bus arrival time prediction algo

rithm using crowd-sourced information. However the work

assumes presence of a specific bus ticketing system, and

specific sounds made by the card readers of the ticketing

system. These sounds are used to detect when a commuter

has boarded a bus. Clearly, the same mechanism will not

carry over to bus systems which do not have such a ticketing

system. Likewise, the bus classification approach in [6]

works based on partial bus route estimates. This will not

work in situations where different bus routes have large

common sub-routes, a common situation in many cities.

Apart from research work, several popular paid/free

smart-phones applications have also been developed to

ward crowd-sourced traffic information. RAC's mobile traf

fic application (www.rac.co.ukltravel/mobile-apps/) crowd

sources information about road incidents and delays. It also

has a trip planner, but specific to the UK and to cars.

Google Maps (maps.google.com) uses crowd-sourcing to

get real-time road traffic information. HERE (here.com)

has similar features. Waze (www.waze.com). in addition,

includes facilities to crowd-source changes to the road map

itself. But the above systems do not include means to

crowd-source public transportation specific information.

Moovit (www.moovitapp.com) and Tiramisu

(tiramisutransit.com) are the closest to our goal in

terms of crowd-sourcing information specific to public

transit. Both have crowd-sourcing of information about

specific routes, crowd-level in specific buses, cleanliness,

feedback on general experience, etc. Tiramisu has explicit

start/stop buttons for the commuter to share real-time

information about the bus's movement.

Open Technical Issues: Although the above work exists

in the space of crowd-sourcing road traffic information,

much work remains to be done. Most of the above work

has been done in developed countries. Several aspects are

different on city roads in developing countries like India.

First, static information about bus transit schedules (which

are used in the absence of real-time crowd-sourced informa

tion) are generally hard to come by and are unreliable even

when available. Such static information is used by most of

the above systems today. Second, it is unclear how well lo

cation determination will work, since auxiliary information

such as Wi-Fi based location is mostly unavailable. Third,

installation of infrastructure (such as a GPS unit) on buses

has been tried and found to be impractical in the long term

due to maintenance issues.

With respect to the currently available applications, listed

above, their performance in terms of accuracy of informa

tion is unclear as there is no publicly reported evaluation

of the system.

In this work, we have designed a naming framework

specific to crowd-sourcing of public transit information. We

also present several on-field measurements from two Indian

cities (Mumbai, Chandigarh), which represent a beginning

toward understanding the practicality of crowd-sourcing

Fig. 1: Public transportation hierarchy

Fig. 2: Location Hierarchy

public transit information.

III. NAMING SCHEME FOR A CONTENT-CENTRIC

FRAMEWORK

In this section, we discuss the content naming mechanism

in CARTS that enables name-based storage and retrieval of

relevant information. It makes the access operations on the

content easier by creating a hierarchical structure. For the

CARTS application domain, we initially develop a naming

framework that supports two classes of entities: public

transportation systems, and locations. We have designed a

separate naming hierarchy for each, as shown in Fig. 1 and

Fig. 2 respectively. All the information relevant to private

transportation systems is available in the location hierarchy.

Public transportation systems need both the hierarchies.

The public transportation hierarchy refers to the location

hierarchy for determining information about its routes. In

each case, a node in the hierarchy names a relevant entity

and has attributes providing additional information about

the entity, as described below.

Public transportation hierarchy

The public transportation hierarchy is composed of three

levels (Fig. 1). The specific public transportation system

is at the top. Services offered (e.g., different routes) form

the middle layer, and individual transport vehicles which

may be used for a given service, and potentially in transit

currently, form the bottom layer.

Among the major attributes associated the top layer

(public transportation system) are: name of the authority

running the public transport, mode of transport (road or

rail), type of transit (city bus, local trains, monorail, etc.).

These can be used by users while querying, filtering out

irrelevant information.

The main attributes associated with the middle layer (ser

vices run by the system) can be broken up into two classes:

static attributes and historical attributes. Static attributes of

a service are obtained from the transportation authority,

and do not change unless there is a change in the actual

service offering. Historical attributes provide the history of

the service so that it can be used in the absence of real-time

information.

The attributes are as follows. (a) Service name - a unique

name that can be used by users to identify the service,

e.g., bus route number 422. (b) Route is a sequence of

locations (serving as transit stations) It may be specified

as a sequence of latitude and longitude values or as transit

points in the location hierarchy. (c) Fare is specified for

each pair of transit stations on the route. (d) Schedule is

the predefined arrival and/or departure times for each transit

station on the route (it could be specified as a frequency).

(e) History: historical data about the actual arrival and/or

departure times for transit stations is stored, which can be

used for example to estimate attributes (e.g., arrival times of

a bus), in the absence of real-time information. This could

be organized based on time of day, day of the week, etc. (f)

Updates: could be used to reflect temporary changes (e.g.,

schedule changes).

Finally, the attributes of the entities in the bottom layer

(transit vehicles offering the service) include the following:

(a) real-time location, speed and direction, (b) occupancy

(i.e., level of crowding in bus), (c) real-time schedule, which

is the actual arrival and/or departure times for the stations

that have been passed up to now, and the forecast times for

the remaining stations (e.g., based on current traffic and/or

history of traffic available in the location hierarchy).

Location hierarchy

The location hierarchy (Fig. 2) is essentially a geographic

hierarchy with transport connectivity information embedded

into it. The location hierarchy is also used to represent the

road and rail connectivity as edges between the nodes in

the hierarchy. Note that the connectivity edges themselves

are not part of the naming hierarchy. In Fig. 2, region R

contains sub-regions A, B and C which further contains

sub-sub-regions.

The attributes of a location entity include the geographic

coordinates and the commonly used names of the location

(e.g., chor bazaar). Also, if the location is a transit station,

information about public transport services available at the

location is specified.

The attributes of the transport connectivity edges include

the two end locations of the edge and type of edge (road or

railway). If the edge represents a section of a road, the

following attributes are also stored. (a) Real-time traffic

Fig. 3: Map of a fictional Atlantis island

state: this can be binary (congested versus free-flowing

traffic) or a multivalued attribute. (b) Road condition: how

smooth or bumpy the road section is. (c) Traffic history: is

maintained which can be used to estimate traffic state in

the absence of real-time information.

Note the interconnecting linkages between the public

transportation hierarchy and the location hierarchy. Also

note that the attributes in the hierarchy can change in real

time.

Such a hierarchical representation gives flexibility in

content-based query-response or publish-subscribe. For in

stance, a commuter may query for any public transport (a

top-layer entity) destined to location X, or may query for

bus service number 422 (a middle layer entity), or may

query for expected arrival time at destination X of the bus

she has just boarded (a bottom layer entity).

Examples of Content Naming Hierarchies

Consider a fictional island - Atlantis with three cities

viz. Gotham, Metropolis and Zion. Gotham city has two

sub-regions viz. Old Gotham city and Arkham. Each of

these cities further contains locations which are rail or bus

stations, or famous places in the city (named as GI, G2,

MI, ZI, etc. for simplicity). These locations are defined

by unique latitude and longitude i.e., these cannot further

contain any locations. Atlantis runs railway and bus services

across these cities. The map of Atlantis along with its road

and rail network in shown in Fig. 3.

Location hierarchy for Atlantis:: The location hierarchy

for Atlantis is shown in Fig. 4. As it can be seen from

figure, location hierarchy maintains a parent-child relation

between Atlantis and its three constituent cities, Gotham

and its constituent two sub-regions, and also between each

region and various locations contained in it.

We only need to maintain the transport connectivity

information among the lowest level locations, and using

these links, connectivity information among the higher level

locations can be easily computed. Also, the information

about roads is also represented in this hierarchy. For in

stance, rail stations located on a particular road can be easily

found out using this hierarchy.

The information related to roads, such as distance cov

ered, traffic, road condition is also stored in the location

Fig. 4: Location hierarchy for Atlantis

hierarchy. For instance, if a user requests for available routes

to go from G2 to G6 in Gotham, location hierarchy gives

three options (G2-G5-G3-G6, G2-G5-G7-G6 and G2-G4-

G7-G6). Now based on the user preference, routes with least

traffic or routes with least distance may be provided first in

response to the user query. Traffic and distance information

is available with the location hierarchy.

Location hierarchy not only represents geographical hi

erarchy and its transport networks, but also stores various

attributes relevant to its elements enabling the system to

resolve various user queries.

Public transportation hierarchies for Atlantis:: The in

formation about public transportation system in Atlantis is

maintained in two hierarchies - rail and bus transportation

hierarchies. Figure ?? shows the rail transportation hierar

chy for Atlantis. The bus public transportation system has

a similar hierarchy.

In the middle layer of hierarchy, static information about

all available services is stored. For example, the middle

layer stores the static schedule, fare details, running history,

etc. These details are common for all the children (lowest

level elements) of a service. The lowest layer in the hier

archy represents the vehicles in transit and stores the real

time information about these vehicles, such as their current

location, speed, crowding, real-time schedule, etc.

When any user submits journey details, the location of

the train/bus is computed and updated in lowest level of

the public transportation hierarchy. The user queries about

the schedule of trains/buses, etc. can be handled using this

information.

Fig. 3 also happens to show a train service #1 and two

trains #IA and #IB serving this route. The details of the

train service #1 and its two trains are shown in the public

transportation hierarchy.

IV. FIELD EXPERIMENTATION RESULTS

We have developed a prototype implementation of the

CARTS system. This includes the above hierarchical con-

Fig. 5: Atlantis public transp. (rail) hierarchy

Mumbai Chandigarh

Trip description lIT main gate ISBT 17 to High

from/to Mulund Court to PEC to

bus stop PGI to ISBT 43 to

ISBT 17

Trip distance 8.5 km (I-way) 6.45 km (circular)

trips 12 (one-way) 12 (circular)

bus stops 23 11

traffic lights 11 8

TABLE I: Data collection at Mumbai, Chandigarh

tent naming framework, which is split across a client-side

Android application, and a server-side data collection and

query handling framework. Prior to a pilot deployment of

the application, we wished to collect preliminary field data

to validate the feasibility of the overall approach. We turn

our attention to this next.

A. Data Collection

We have collected data along specific routes in two cities:

Mumbai, Chandigarh. We installed our Android applica

tion on a smart-phone, and started the data collection at

the time of boarding a bus by pressing a button on the

application (much like it would happen in real use). GPS

and accelerometer sensor readings were recorded using the

Android API.

We enhanced the application to manually mark the

ground truth of bus stop and traffic light locations (through

button press on the application), and used specific trips to

collect this information at either city.

Overall information about the data collection at either

city is given in Table I.

B. GPS Connectivity

We now characterize the availability of GPS connectivity

in our data. Fig. 6 shows the percentage of time as well

Fig. 6: Loss of GPS Connectivity

as distance for which GPS connectivity was missed, in

our Mumbai trips. Overall, we see that GPS connectivity

can be lost for a significant time. The mean loss in GPS

connectivity is 18.4% of the entire journey time, and it is

as high as about 80% for one of the trips.

In separate experiments, we found that this is not due

to any specific model of smart-phone, or due to a specific

cellular network provider (for assisted GPS). Nor did we

find any specific correlation with the location at which GPS

connectivity is lost. However, we did find a pattern in terms

of when GPS connectivity is lost. We observed that GPS

connectivity has a high chance of getting lost soon after

the commuter has boarded a bus. To characterize this, we

find that for 7 of 6x2=12 trips (58.3%) GPS connectivity

is lost within the first 1 km (lost for a distance over 100

m) of the trip. Note that this not indicative of correlation

with location, as we do not have similar loss of connectivity

toward the end of the trip, in a round-trip data collection.

The mean time of loss of GPS connectivity in the first 1

km is about 65 sec.

We observed a similar pattern in our Chandigarh data

as well, although the loss of GPS connectivity was a bit

lesser. The mean loss in GPS connectivity was for 9.6% of

the overall journey time (standard deviation 1l.1 %). For 5

of the 12 circular trips (4l.7%) GPS connectivity was lost

within the first 1 km (lost for a distance over 100 m). And

the mean time for which GPS connectivity was lost in the

first 1 kIll was about 19 sec.

A plausible reason for loss of GPS connectivity at the

beginning of a bus trip is that we suddenly move from

an outdoor location to inside the bus, which somewhat

resembles an indoor location, with poor line-of-sight to GPS

satellites. We note that our data was collected at times of

relative less bus crowd. If a bus were crowded, then the loss

of GPS connectivity could be worse.

The overall implication of the above result is that we

cannot rely entirely upon GPS connectivity for our data

collection and subsequent algorithms (e.g. prediction of

bus arrival time). We must explore possibilities such as:

Fig. 7: CDF of dwell time at bus-stops

sharing of location information across commuters of the

same bus, using GSM network based location when GPS

is not available (WiFi-based location cannot yet be used

in most places in India as WiFi deployment is not yet as

prevalent).

C. Dwell Time at Bus Stops

We next characterize the dwell time of the bus at each

of its bus stops (how long it stops). For this, we use the

manually marked ground truth of the bus stop locations. We

then get the dwell time metric by using the exact location of

the bus stop from the ground truth data and then observing

how long the bus stays stationary (accounting any error in

GPS readings) in that location during the data collection

trips. Fig. 7 plots the CDF of the dwell times, across all

the bus stops. Separate lines are shown for Mumbai and

Chandigarh.

The mean dwell time at Mumbai was 5.9 sec (standard

deviation 2.9 sec), while the mean dwell time at Chandigarh

was a similar value of 5.1 sec (standard deviation 3.6 sec).

Such small numbers imply that even ignoring the dwell time

from any bus arrival time prediction algorithm would not

result in significant error. While it is true that we collected

data during relatively less busy times, and that dwell times

could be higher at peak times, it is also likely that they

would anyway be over-shadowed by the travel time, which

will also be higher at peak times.

D. Bus Stop Detection

We now explore using our data, the feasibility of an

automated bus-stop detection mechanism. The work in [5]

uses GPS traces to deduce road segments automatically.

Likewise, given a collection of GPS traces over multiple

trips, is it possible to deduce the locations of the bus-stops?

We do a preliminary analysis toward this question now.

To mark a particular instance of stationary-bus as a bus

stop, we first apply a lower bound of movement under 20

m within 5 sec. We do this since even when the bus is

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

Trip Number

%
 m

is
s
e

d
% of time and distance missed in a trip due to loss of GPS connectivity

% of Time missed

% of Distance missed

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Dwell time (in seconds)

%
 o

f
b

u
s
 s

to
p

s

CDF of % of bus stops vs Dwell time

Mumbai

Chandigarh

NumTrips used

in algorithm

1

2

3

4

1

2

3

4

0.20 0.61

0.31 0.65

0.40 0.26

0.40 0.09

Fuzzy-Unton, Mumbal

0.20 0.61

0.11 0.74

0.08 0.87

0.06 0.91

Recall for

traffic lights

0.36

0.36

0.09

0.09

0.36

0.73

0.73

0.73

Fuzzy-IntersectIOn, Chandlgarh

1 0.30 0.72 0.58

2 0.34 0.66 0.58

3 0.37 0.60 0.46

4 0.38 0.51 0.36

Fuzzy-Unton, Chandlgarh

1 0.30 0.72 0.58

2 0.12 0.90 0.75

3 0.08 0.90 0.75

4 0.06 0.90 0.75

TABLE II: Precision and recall for the fuzzy-intersection

and fuzzy-union algorithms (NumTrips is an algorithm

parameter)

stationary, we could get an updated GPS reading from the

Android API, due to inherent GPS error.

Just using automated bus stop markings from one trip,

using the above mechanism could be error-prone, as after

all, the bus remains stationary at various locations during

a commute: at (various points in the queue behind) traffic

signals, as well as during any traffic congestion. To combine

information across trips, we consider two broad approaches:

a fuzzy intersection, and a fuzzy union. The adjective

"fuzzy" refers to the fact that across trips, we consider

two locations marked as bus stops to be the same, if they

are within 30m of each other. We now evaluate these two

methods, using data from the two cities' trips.

Table II shows the precision as well as recall for the two

algorithms, for the case of Mumbai as well as for Chandi

garh. In the fuzzy-intersection and fuzzy-union algorithms,

the following parameter is used: NumTrips, the number

of trips over which the intersection or union is applied.

The table shows the algorithm behaviour for values 1-4 of

this parameter. In our ground truth, we had also collected

information about traffic light locations along the routes we

travelled. For comparison, the table also reports the recall

in detection of traffic lights using the same two algorithms.

We see from the table that the behaviour of fuzzy

intersection and fuzzy-union with respect to the NumTrips

parameter is the reverse of one another. With fuzzy

intersection, the precision improves with increase in

NumTrips, while the recall drops. With fuzzy-union, the

behaviour is the reverse. This is what we would expect.

We further observe that neither algorithm has a reason

able value of precision as well as recall, for any value of

NumTrips. That is, both algorithms perform poorly at least

in one metric in each case. This holds for the Mumbai data

and the Chandigarh data. For fuzzy-intersection, the recall

in the case of traffic lights is poor as well.

While the fuzzy-intersection and fuzzy-union represent

only preliminary explorations, the overall implication of the

above result is that automated detection of bus stops appears

to be a tough problem, given the various factors introducing

noise in the system: GPS errors, bus-stops getting confused

with other traffic related stops, etc.

V. CONCLUSION

In this work we have considered the use of crowd

sourcing for collecting information about public transporta

tion units in a road network, from commuters. We designed

an intuitive and hierarchical naming framework to refer to

the various entities involved. We believe that this will lead

to a flexible and scalable implementation in practice. We

have developed an early prototype of the system. The paper

also presented analysis of data collected on roads from two

cities, Mumbai and Chandigarh. Our overall results indicate

that using GPS connectivity alone can be error prone in

several situations due to loss of GPS connectivity. Next,

we find that bus-stop dwell times are mostly under 5-10

sec. Finally, we presented results which point toward the

challenge in automated detection of bus-stops from GPS

traces. A more comprehensive implementation and real-user

evaluation of the system is our immediate future work.

Acknowledgement: This work is undertaken as part of

the project titled "CARTS: Communication Assisted Road

Transportation Systems", supported by ITRA, Media Lab

Asia.

REFERENCES

[1] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson. EasyTracker:
Automatic Transit Tracking, Mapping, and Arrival Time Prediction
Using Smartphones. In SenSys, Nov 2011.

[2] P. Mohan, Y. Padmanabhan, and R. Ramjee. Nericell: Rich Monitoring
of Road and Traffic Conditions Using Mobile Smartphones. In SenSys,
2008.

[3] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakr
ishnan, S. Toledo, and J. Eriksson. VTrack: Accurate, Energy-Aware
Road Traffic Delay Estimation Using Mobile Phones. In SenSys, Nov
2009.

[4] A. Thiagarajan, L. S. Ravindranath, H. Balakrishnan, S. Madden,
and L. Girod. Accurate, Low-Energy Trajectory Mapping for Mobile
Devices. In 8th USENIX Symp. on Networked Systems Design and
Implementation (NSDI), Boston, MA, March 2011.

[5] J. Yoon, B. Noble, and M. Liu. Surface street traffic estimation. In
MobiSys, 2007.

[6] P. Zhou, Y. Zheng, and M. Li. How Long to Wait?: Predicting Bus
Arrival Time with Mobile Phone based Participatory Sensing. In
MobiSys, 2012.

