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Abstract: Commuting on roads in densely populated 

cities of the developing world is fraught with high delays 

and uncertainties. Wide use of public transportation can 

ease the load on the road infrastructure, but such use is 

not convenient, partly due to the unpredictable nature. In 

this work, our goal is to improve the usability of public 

transportation, through better information. Such information 

can lead to better planning and predictability for commuters. 

We take a crowd-sourced approach where information about 

transportation units as well as road conditions is crowd

sourced from commuters. The information is then processed 

and made available to other commuters. In this context, this 

paper presents a naming framework we have developed, 

which will enable flexible and scalable content-driven data 

gathering and dissemination. Based on a preliminary im

plementation of the framework, we present various field

experiment results which shed light on the practicality of 

the proposed approach as well as on technical issues which 

need further careful addressing. 

I. INTRODUCTION AND MOTIVATION 

Commuting on roads, especially in peak hours, is not 

only unpleasant but also wasteful of time and fuel. While 

this is true of most places in the world, it is especially 

true in densely populated cities of the developing world 

where the stress on road space is especially high. Use of 

public transportation (buses, commuter trains) can alleviate 

the situation, if only a large section of population were to 

use it. But we currently are in a vicious cycle: most who can 

afford private vehicles shy away from public transportation, 

due to their poor usability and predictability; and this further 

stresses the already stressed road infrastructure. 

In this work, termed CARTS (Communication Assisted 

Road Transportation Systems), we seek to improve the 

usability of public transportation systems, primarily through 

better availability of real-time information. Our hope is 

that this will contribute to breaking the vicious cycle, 

by providing better planned and more predictable public 

transportation commutes. 

Our approach is to crowd-source information and public 

transportation units, as well as other relevant informa

tion such as real-time road conditions, from commuters 

themselves. For this, we use commuters' smart-phones. 

Information is crowd-sourced in an automated fashion (e.g. 

speed of movement through GPS sensor) as well as through 

manual input (e.g. "I have boarded bus number 356 now"). 

Subsequently, we disseminate the processed information to 

interested cOlmnuters, to answer queries such as "When is 

the next bus number 25 expected at my bus stop?", "When 

can I expect to reach my destination by boarding that bus?". 

In this paper, we make a beginning toward supporting the 

above crowd-sourced information framework. We present 

the design of a naming scheme (Sec. III) which supports 

flexible and potentially scalable means of data gathering and 

dissemination. The naming scheme enables content-driven 

information collection and dissemination. We have a prelim

inary implementation of the crowd-sourced framework on 

the Android platform. Prior to a pilot deployment, we have 

collected several field measurements, results from which are 

presented in Sec. IV. Our overall observations are that using 

GPS connectivity in buses is not always reliable, likely due 

to physical obstructions and surrounding people. We find 

that bus-stop dwell times do not contribute significantly to 

travel time. Finally, we also find that automated detection 

of bus stops is not easy, as there is significant variability 

along various dimensions: where exactly a bus stops, and 

how long it stops, from one trip to another. 

II. RELATED WORK 

We now present related prior work which has looked at 

crowd-sourced approaches for getting road traffic related 

information. 

VTrack [3] is a system which dynamically tracks location 

of vehicles. The focus here is on lowering power consump

tion of the smart-phones involved, by using Wi-Fi based 

positioning in place of GPS when possible. CTrack [4] 

furthers this work by considering GSM cellular signal

based positioning as well. Nericell [2] develops techniques 

to get information about road conditions (e.g. congested, 

noisy) using smart-phone sensors. The work in [5] uses 

GPS data to deduce information about road conditions, e.g. 

congestion level in each road segment. The techniques in 

the above works are complementary and orthogonal to our 

goal of crowd-sourcing public transit information. 

EasyTracker [1] deals with prediction of arrival time of a 

transportation unit. It however assumes dedicated on-vehicle 

sensors while our focus is on crowd-sourced information. 
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Zhou et. al. [6] develop a bus arrival time prediction algo

rithm using crowd-sourced information. However the work 

assumes presence of a specific bus ticketing system, and 

specific sounds made by the card readers of the ticketing 

system. These sounds are used to detect when a commuter 

has boarded a bus. Clearly, the same mechanism will not 

carry over to bus systems which do not have such a ticketing 

system. Likewise, the bus classification approach in [6] 

works based on partial bus route estimates. This will not 

work in situations where different bus routes have large 

common sub-routes, a common situation in many cities. 

Apart from research work, several popular paid/free 

smart-phones applications have also been developed to

ward crowd-sourced traffic information. RAC's mobile traf

fic application (www.rac.co.ukltravel/mobile-apps/) crowd

sources information about road incidents and delays. It also 

has a trip planner, but specific to the UK and to cars. 

Google Maps (maps.google.com) uses crowd-sourcing to 

get real-time road traffic information. HERE (here.com) 

has similar features. Waze (www.waze.com). in addition, 

includes facilities to crowd-source changes to the road map 

itself. But the above systems do not include means to 

crowd-source public transportation specific information. 

Moovit (www.moovitapp.com) and Tiramisu 

(tiramisutransit.com) are the closest to our goal in 

terms of crowd-sourcing information specific to public 

transit. Both have crowd-sourcing of information about 

specific routes, crowd-level in specific buses, cleanliness, 

feedback on general experience, etc. Tiramisu has explicit 

start/stop buttons for the commuter to share real-time 

information about the bus's movement. 

Open Technical Issues: Although the above work exists 

in the space of crowd-sourcing road traffic information, 

much work remains to be done. Most of the above work 

has been done in developed countries. Several aspects are 

different on city roads in developing countries like India. 

First, static information about bus transit schedules (which 

are used in the absence of real-time crowd-sourced informa

tion) are generally hard to come by and are unreliable even 

when available. Such static information is used by most of 

the above systems today. Second, it is unclear how well lo

cation determination will work, since auxiliary information 

such as Wi-Fi based location is mostly unavailable. Third, 

installation of infrastructure (such as a GPS unit) on buses 

has been tried and found to be impractical in the long term 

due to maintenance issues. 

With respect to the currently available applications, listed 

above, their performance in terms of accuracy of informa

tion is unclear as there is no publicly reported evaluation 

of the system. 

In this work, we have designed a naming framework 

specific to crowd-sourcing of public transit information. We 

also present several on-field measurements from two Indian 

cities (Mumbai, Chandigarh), which represent a beginning 

toward understanding the practicality of crowd-sourcing 

Fig. 1: Public transportation hierarchy 

Fig. 2: Location Hierarchy 

public transit information. 

III. NAMING SCHEME FOR A CONTENT-CENTRIC 

FRAMEWORK 

In this section, we discuss the content naming mechanism 

in CARTS that enables name-based storage and retrieval of 

relevant information. It makes the access operations on the 

content easier by creating a hierarchical structure. For the 

CARTS application domain, we initially develop a naming 

framework that supports two classes of entities: public 

transportation systems, and locations. We have designed a 

separate naming hierarchy for each, as shown in Fig. 1 and 

Fig. 2 respectively. All the information relevant to private 

transportation systems is available in the location hierarchy. 

Public transportation systems need both the hierarchies. 

The public transportation hierarchy refers to the location 

hierarchy for determining information about its routes. In 

each case, a node in the hierarchy names a relevant entity 

and has attributes providing additional information about 

the entity, as described below. 

Public transportation hierarchy 

The public transportation hierarchy is composed of three 

levels (Fig. 1). The specific public transportation system 

is at the top. Services offered (e.g., different routes) form 

the middle layer, and individual transport vehicles which 

may be used for a given service, and potentially in transit 

currently, form the bottom layer. 

Among the major attributes associated the top layer 

(public transportation system) are: name of the authority 



running the public transport, mode of transport (road or 

rail), type of transit (city bus, local trains, monorail, etc.). 

These can be used by users while querying, filtering out 

irrelevant information. 

The main attributes associated with the middle layer (ser

vices run by the system) can be broken up into two classes: 

static attributes and historical attributes. Static attributes of 

a service are obtained from the transportation authority, 

and do not change unless there is a change in the actual 

service offering. Historical attributes provide the history of 

the service so that it can be used in the absence of real-time 

information. 

The attributes are as follows. (a) Service name - a unique 

name that can be used by users to identify the service, 

e.g., bus route number 422. (b) Route is a sequence of 

locations (serving as transit stations) It may be specified 

as a sequence of latitude and longitude values or as transit 

points in the location hierarchy. (c) Fare is specified for 

each pair of transit stations on the route. (d) Schedule is 

the predefined arrival and/or departure times for each transit 

station on the route ( it could be specified as a frequency). 

(e) History: historical data about the actual arrival and/or 

departure times for transit stations is stored, which can be 

used for example to estimate attributes (e.g., arrival times of 

a bus), in the absence of real-time information. This could 

be organized based on time of day, day of the week, etc. (f) 

Updates: could be used to reflect temporary changes (e.g., 

schedule changes). 

Finally, the attributes of the entities in the bottom layer 

(transit vehicles offering the service) include the following: 

(a) real-time location, speed and direction, (b) occupancy 

(i.e., level of crowding in bus), (c) real-time schedule, which 

is the actual arrival and/or departure times for the stations 

that have been passed up to now, and the forecast times for 

the remaining stations (e.g., based on current traffic and/or 

history of traffic available in the location hierarchy). 

Location hierarchy 

The location hierarchy (Fig. 2) is essentially a geographic 

hierarchy with transport connectivity information embedded 

into it. The location hierarchy is also used to represent the 

road and rail connectivity as edges between the nodes in 

the hierarchy. Note that the connectivity edges themselves 

are not part of the naming hierarchy. In Fig. 2, region R 

contains sub-regions A, B and C which further contains 

sub-sub-regions. 

The attributes of a location entity include the geographic 

coordinates and the commonly used names of the location 

(e.g., chor bazaar). Also, if the location is a transit station, 

information about public transport services available at the 

location is specified. 

The attributes of the transport connectivity edges include 

the two end locations of the edge and type of edge (road or 

railway). If the edge represents a section of a road, the 

following attributes are also stored. (a) Real-time traffic 

Fig. 3: Map of a fictional Atlantis island 

state: this can be binary (congested versus free-flowing 

traffic) or a multivalued attribute. (b) Road condition: how 

smooth or bumpy the road section is. (c) Traffic history: is 

maintained which can be used to estimate traffic state in 

the absence of real-time information. 

Note the interconnecting linkages between the public 

transportation hierarchy and the location hierarchy. Also 

note that the attributes in the hierarchy can change in real

time. 

Such a hierarchical representation gives flexibility in 

content-based query-response or publish-subscribe. For in

stance, a commuter may query for any public transport (a 

top-layer entity) destined to location X, or may query for 

bus service number 422 (a middle layer entity), or may 

query for expected arrival time at destination X of the bus 

she has just boarded (a bottom layer entity). 

Examples of Content Naming Hierarchies 

Consider a fictional island - Atlantis with three cities 

viz. Gotham, Metropolis and Zion. Gotham city has two 

sub-regions viz. Old Gotham city and Arkham. Each of 

these cities further contains locations which are rail or bus 

stations, or famous places in the city (named as GI, G2, 

MI, ZI, etc. for simplicity). These locations are defined 

by unique latitude and longitude i.e., these cannot further 

contain any locations. Atlantis runs railway and bus services 

across these cities. The map of Atlantis along with its road 

and rail network in shown in Fig. 3. 

Location hierarchy for Atlantis:: The location hierarchy 

for Atlantis is shown in Fig. 4. As it can be seen from 

figure, location hierarchy maintains a parent-child relation 

between Atlantis and its three constituent cities, Gotham 

and its constituent two sub-regions, and also between each 

region and various locations contained in it. 

We only need to maintain the transport connectivity 

information among the lowest level locations, and using 

these links, connectivity information among the higher level 

locations can be easily computed. Also, the information 

about roads is also represented in this hierarchy. For in

stance, rail stations located on a particular road can be easily 

found out using this hierarchy. 

The information related to roads, such as distance cov

ered, traffic, road condition is also stored in the location 



Fig. 4: Location hierarchy for Atlantis 

hierarchy. For instance, if a user requests for available routes 

to go from G2 to G6 in Gotham, location hierarchy gives 

three options (G2-G5-G3-G6, G2-G5-G7-G6 and G2-G4-

G7-G6). Now based on the user preference, routes with least 

traffic or routes with least distance may be provided first in 

response to the user query. Traffic and distance information 

is available with the location hierarchy. 

Location hierarchy not only represents geographical hi

erarchy and its transport networks, but also stores various 

attributes relevant to its elements enabling the system to 

resolve various user queries. 

Public transportation hierarchies for Atlantis::  The in

formation about public transportation system in Atlantis is 

maintained in two hierarchies - rail and bus transportation 

hierarchies. Figure ?? shows the rail transportation hierar

chy for Atlantis. The bus public transportation system has 

a similar hierarchy. 

In the middle layer of hierarchy, static information about 

all available services is stored. For example, the middle 

layer stores the static schedule, fare details, running history, 

etc. These details are common for all the children (lowest 

level elements) of a service. The lowest layer in the hier

archy represents the vehicles in transit and stores the real

time information about these vehicles, such as their current 

location, speed, crowding, real-time schedule, etc. 

When any user submits journey details, the location of 

the train/bus is computed and updated in lowest level of 

the public transportation hierarchy. The user queries about 

the schedule of trains/buses, etc. can be handled using this 

information. 

Fig. 3 also happens to show a train service #1 and two 

trains #IA and #IB serving this route. The details of the 

train service #1 and its two trains are shown in the public 

transportation hierarchy. 

IV. FIELD EXPERIMENTATION RESULTS 

We have developed a prototype implementation of the 

CARTS system. This includes the above hierarchical con-

Fig. 5: Atlantis public transp. (rail) hierarchy 

Mumbai Chandigarh 

Trip description lIT main gate ISBT 17 to High 

from/to Mulund Court to PEC to 

bus stop PGI to ISBT 43 to 

ISBT 17 

Trip distance 8.5 km (I-way) 6.45 km (circular) 

# trips 12 (one-way) 12 (circular) 

# bus stops 23 11 

# traffic lights 11 8 

TABLE I: Data collection at Mumbai, Chandigarh 

tent naming framework, which is split across a client-side 

Android application, and a server-side data collection and 

query handling framework. Prior to a pilot deployment of 

the application, we wished to collect preliminary field data 

to validate the feasibility of the overall approach. We turn 

our attention to this next. 

A. Data Collection 

We have collected data along specific routes in two cities: 

Mumbai, Chandigarh. We installed our Android applica

tion on a smart-phone, and started the data collection at 

the time of boarding a bus by pressing a button on the 

application (much like it would happen in real use). GPS 

and accelerometer sensor readings were recorded using the 

Android API. 

We enhanced the application to manually mark the 

ground truth of bus stop and traffic light locations (through 

button press on the application), and used specific trips to 

collect this information at either city. 

Overall information about the data collection at either 

city is given in Table I. 

B. GPS Connectivity 

We now characterize the availability of GPS connectivity 

in our data. Fig. 6 shows the percentage of time as well 



Fig. 6: Loss of GPS Connectivity 

as distance for which GPS connectivity was missed, in 

our Mumbai trips. Overall, we see that GPS connectivity 

can be lost for a significant time. The mean loss in GPS 

connectivity is 18.4% of the entire journey time, and it is 

as high as about 80% for one of the trips. 

In separate experiments, we found that this is not due 

to any specific model of smart-phone, or due to a specific 

cellular network provider (for assisted GPS). Nor did we 

find any specific correlation with the location at which GPS 

connectivity is lost. However, we did find a pattern in terms 

of when GPS connectivity is lost. We observed that GPS 

connectivity has a high chance of getting lost soon after 

the commuter has boarded a bus. To characterize this, we 

find that for 7 of 6x2=12 trips (58.3%) GPS connectivity 

is lost within the first 1 km (lost for a distance over 100 

m) of the trip. Note that this not indicative of correlation 

with location, as we do not have similar loss of connectivity 

toward the end of the trip, in a round-trip data collection. 

The mean time of loss of GPS connectivity in the first 1 

km is about 65 sec. 

We observed a similar pattern in our Chandigarh data 

as well, although the loss of GPS connectivity was a bit 

lesser. The mean loss in GPS connectivity was for 9.6% of 

the overall journey time (standard deviation 1l.1 %). For 5 

of the 12 circular trips (4l.7%) GPS connectivity was lost 

within the first 1 km (lost for a distance over 100 m). And 

the mean time for which GPS connectivity was lost in the 

first 1 kIll was about 19 sec. 

A plausible reason for loss of GPS connectivity at the 

beginning of a bus trip is that we suddenly move from 

an outdoor location to inside the bus, which somewhat 

resembles an indoor location, with poor line-of-sight to GPS 

satellites. We note that our data was collected at times of 

relative less bus crowd. If a bus were crowded, then the loss 

of GPS connectivity could be worse. 

The overall implication of the above result is that we 

cannot rely entirely upon GPS connectivity for our data 

collection and subsequent algorithms (e.g. prediction of 

bus arrival time). We must explore possibilities such as: 

Fig. 7: CDF of dwell time at bus-stops 

sharing of location information across commuters of the 

same bus, using GSM network based location when GPS 

is not available (WiFi-based location cannot yet be used 

in most places in India as WiFi deployment is not yet as 

prevalent). 

C. Dwell Time at Bus Stops 

We next characterize the dwell time of the bus at each 

of its bus stops (how long it stops). For this, we use the 

manually marked ground truth of the bus stop locations. We 

then get the dwell time metric by using the exact location of 

the bus stop from the ground truth data and then observing 

how long the bus stays stationary (accounting any error in 

GPS readings) in that location during the data collection 

trips. Fig. 7 plots the CDF of the dwell times, across all 

the bus stops. Separate lines are shown for Mumbai and 

Chandigarh. 

The mean dwell time at Mumbai was 5.9 sec (standard 

deviation 2.9 sec), while the mean dwell time at Chandigarh 

was a similar value of 5.1 sec (standard deviation 3.6 sec). 

Such small numbers imply that even ignoring the dwell time 

from any bus arrival time prediction algorithm would not 

result in significant error. While it is true that we collected 

data during relatively less busy times, and that dwell times 

could be higher at peak times, it is also likely that they 

would anyway be over-shadowed by the travel time, which 

will also be higher at peak times. 

D. Bus Stop Detection 

We now explore using our data, the feasibility of an 

automated bus-stop detection mechanism. The work in [5] 

uses GPS traces to deduce road segments automatically. 

Likewise, given a collection of GPS traces over multiple 

trips, is it possible to deduce the locations of the bus-stops? 

We do a preliminary analysis toward this question now. 

To mark a particular instance of stationary-bus as a bus 

stop, we first apply a lower bound of movement under 20 

m within 5 sec. We do this since even when the bus is 
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NumTrips used 

in algorithm 

1 

2 

3 

4 

1 

2 

3 

4 

0.20 0.61 

0.31 0.65 

0.40 0.26 

0.40 0.09 

Fuzzy-Unton, Mumbal 

0.20 0.61 

0.11 0.74 

0.08 0.87 

0.06 0.91 

Recall for 

traffic lights 

0.36 

0.36 

0.09 

0.09 

0.36 

0.73 

0.73 

0.73 

Fuzzy-IntersectIOn, Chandlgarh 

1 0.30 0.72 0.58 

2 0.34 0.66 0.58 

3 0.37 0.60 0.46 

4 0.38 0.51 0.36 

Fuzzy-Unton, Chandlgarh 

1 0.30 0.72 0.58 

2 0.12 0.90 0.75 

3 0.08 0.90 0.75 

4 0.06 0.90 0.75 

TABLE II: Precision and recall for the fuzzy-intersection 

and fuzzy-union algorithms (NumTrips is an algorithm 

parameter) 

stationary, we could get an updated GPS reading from the 

Android API, due to inherent GPS error. 

Just using automated bus stop markings from one trip, 

using the above mechanism could be error-prone, as after 

all, the bus remains stationary at various locations during 

a commute: at (various points in the queue behind) traffic 

signals, as well as during any traffic congestion. To combine 

information across trips, we consider two broad approaches: 

a fuzzy intersection, and a fuzzy union. The adjective 

"fuzzy" refers to the fact that across trips, we consider 

two locations marked as bus stops to be the same, if they 

are within 30m of each other. We now evaluate these two 

methods, using data from the two cities' trips. 

Table II shows the precision as well as recall for the two 

algorithms, for the case of Mumbai as well as for Chandi

garh. In the fuzzy-intersection and fuzzy-union algorithms, 

the following parameter is used: NumTrips, the number 

of trips over which the intersection or union is applied. 

The table shows the algorithm behaviour for values 1-4 of 

this parameter. In our ground truth, we had also collected 

information about traffic light locations along the routes we 

travelled. For comparison, the table also reports the recall 

in detection of traffic lights using the same two algorithms. 

We see from the table that the behaviour of fuzzy

intersection and fuzzy-union with respect to the NumTrips 

parameter is the reverse of one another. With fuzzy

intersection, the precision improves with increase in 

NumTrips, while the recall drops. With fuzzy-union, the 

behaviour is the reverse. This is what we would expect. 

We further observe that neither algorithm has a reason

able value of precision as well as recall, for any value of 

NumTrips. That is, both algorithms perform poorly at least 

in one metric in each case. This holds for the Mumbai data 

and the Chandigarh data. For fuzzy-intersection, the recall 

in the case of traffic lights is poor as well. 

While the fuzzy-intersection and fuzzy-union represent 

only preliminary explorations, the overall implication of the 

above result is that automated detection of bus stops appears 

to be a tough problem, given the various factors introducing 

noise in the system: GPS errors, bus-stops getting confused 

with other traffic related stops, etc. 

V. CONCLUSION 

In this work we have considered the use of crowd

sourcing for collecting information about public transporta

tion units in a road network, from commuters. We designed 

an intuitive and hierarchical naming framework to refer to 

the various entities involved. We believe that this will lead 

to a flexible and scalable implementation in practice. We 

have developed an early prototype of the system. The paper 

also presented analysis of data collected on roads from two 

cities, Mumbai and Chandigarh. Our overall results indicate 

that using GPS connectivity alone can be error prone in 

several situations due to loss of GPS connectivity. Next, 

we find that bus-stop dwell times are mostly under 5-10 

sec. Finally, we presented results which point toward the 

challenge in automated detection of bus-stops from GPS 

traces. A more comprehensive implementation and real-user 

evaluation of the system is our immediate future work. 
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