
Contrasting Exploration in Parameter and Action Space:
A Zeroth-Order Optimization Perspective

Anirudh Vemula Wen Sun J. Andrew Bagnell
Robotics Institute

Carnegie Mellon University
vemula@cmu.edu

Robotics Institute
Carnegie Mellon University

wensun@cs.cmu.edu

Aurora Innovation
dbagnell@ri.cmu.edu

Abstract

Black-box optimizers that explore in param-
eter space have often been shown to outper-
form more sophisticated action space explo-
ration methods developed specifically for the
reinforcement learning problem. We exam-
ine these black-box methods closely to iden-
tify situations in which they are worse than
action space exploration methods and those
in which they are superior. Through sim-
ple theoretical analyses, we prove that com-
plexity of exploration in parameter space de-
pends on the dimensionality of parameter
space, while complexity of exploration in ac-
tion space depends on both the dimensional-
ity of action space and horizon length. This is
also demonstrated empirically by comparing
simple exploration methods on several model
problems, including Contextual Bandit, Lin-
ear Regression and Reinforcement Learning
in continuous control.

1 Introduction

Model-free policy search is a general approach to learn
parameterized policies from sampled trajectories in the
environment without learning a model of the underly-
ing dynamics. These methods update the parameters
such that trajectories with higher returns (or total re-
ward) are more likely to be obtained when following
the updated policy (Kober et al., 2013). The simplic-
ity of these approaches have made them popular in
Reinforcement Learning (RL).

Policy gradient methods, such as REINFORCE

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

(Williams, 1992) and its extensions (Kakade, 2002;
Bagnell et al., 2004; Silver et al., 2014; Schulman et al.,
2015), compute an estimate of a direction of improve-
ment from sampled trajectories collected by executing
a stochastic policy. In other words, these methods
rely on randomized exploration in action space. These
methods then leverage the Jacobian of the policy to
update its parameters to increase the probability of
good action sequences accordingly. Such a gradient
estimation algorithm can be considered a combination
of a zeroth-order approach and a first-order approach:
(1) it never exploits the slope of the reward function
or dynamics, with respect to actions, but rather relies
only on random exploration in action space to discover
potentially good sequences of actions; (2) however, it
exploits the first order information of the parameter-
ized policy for updating the policy’s parameters. Note
that the chance of finding a sequence of actions result-
ing in high total reward decreases (as much as expo-
nentially (Kakade and Langford, 2002)) as the horizon
length increases and thus policy gradient methods of-
ten exhibit high variance and a resulting large sam-
ple complexity (Peters and Schaal, 2008; Zhao et al.,
2011).

Black-box policy search methods, on the other hand,
seek to directly optimize the total reward in the space
of parameters by employing , e.g., finite-difference-like
methods to compute estimates of the gradient with
respect to policy parameters (Bagnell and Schneider,
2001; Mannor et al., 2003; Heidrich-Meisner and Igel,
2008; Tesch et al., 2011; Sehnke et al., 2010; Salimans
et al., 2017; Mania et al., 2018). Intuitively, these
methods rely on exploration in parameter space: by
searching in the parameter space, these methods may
discover an improvement direction. Note that these
methods are fully zeroth-order, i.e., they exploit no
first-order information of the parameterized policy, the
reward, or the dynamics. Although policy gradient
methods leverage more information, notably the Jaco-
bian of the action with respect to policy, black-box pol-
icy search methods have at times demonstrated better

Contrasting Exploration in Parameter and Action Space

empirical performance (see the discussion in (Kober
et al., 2013; Mania et al., 2018)). These perhaps sur-
prising results motivate us to analyze: In what situ-
ations should we expect parameter space policy search
methods to outperform action space methods?

To do so, we leverage prior work in zeroth-order op-
timization methods. In the convex setting, (Flax-
man et al., 2005; Agarwal et al., 2010; Nesterov and
Spokoiny, 2017) showed that one can construct gradi-
ent estimates using zeroth order oracles and derived
upper bounds on the number of samples needed. But
for most RL tasks, the return as a function of param-
eters, or action sequence, is highly non-convex (Sut-
ton and Barto, 1998). Hence we focus on the non-
convex setting and analyze convergence to station-
ary points. Ghadimi and Lan (2013); Nesterov and
Spokoiny (2017) studied zeroth order non-convex op-
timization by providing upper bounds on the number
of samples needed to close in on a stationary point.
Computing lower bounds in zeroth order non-convex
optimization is still an open problem (Carmon et al.,
2017a,b).

In our work, we extend the analysis proposed in
(Ghadimi and Lan, 2013) to the policy search setting
and analyze the sample complexity of parameter and
action space exploration methods in policy search. We
begin with a degenerate, one-step control problem of
online linear regression with partial feedback, (Flax-
man et al., 2005), where the objective is to learn the
parameters of the linear regressor without access to
the true scalar regression targets. We show that for
parameter space exploration methods, to achieve ε-
optimality, requires O(b2/ε4) samples, where b is the
input feature dimensionality. By contrast, an action
space exploration method requires O(1/ε4) many sam-
ples with a sample complexity independent of input
feature dimensionality b. This is tested empirically
on two simple tasks: Bandit Multi-class learning on
MNIST with policies parameterized by convolutional
neural networks which can be seen as a Contextual
Bandit problem with rich observations, and Online
Linear Regression with partial information. The re-
sults demonstrate action space exploration methods
outperform parameter space methods when the pa-
rameter dimensionality is substantially larger than ac-
tion dimensionality.

We present similar analysis for the multi-step control
problem of model-free policy search in reinforcement
learning, (Kober et al., 2013), by considering the ob-
jective of reaching ε-close to a stationary point in the
sense that ‖∇J(θ)‖22 ≤ ε for the non-convex objec-
tive J(θ). Our results show that, under certain as-
sumptions, parameter space exploration methods need

O(d
2

ε3) samples to reach ε close to a stationary point,

where d is the policy parameter dimensionality. On
the other hand, action space exploration methods need

O(p
2H4

ε4) samples to achieve the same objective, where
p is the action dimensionality and H is the horizon
length of the task. This shows that action space ex-
ploration methods have a dependence on the horizon
length H while parameter space exploration meth-
ods depend only on parameter space dimensionality
dOngoing work by Tu and Recht (2018) demonstrated
through asymptotic lower bounds that the dependence
of sample complexity of action space exploration meth-
ods on horizon H is unavoidable in the LQR setting.
This is tested empirically on popular RL benchmarks
from OpenAI gym (Brockman et al., 2016a), and the
results show that as horizon length increases, parame-
ter space methods outperform action space exploration
methods. This matches the intuition and results pre-
sented in recent works like (Bagnell and Schneider,
2001; Szita and Lörincz, 2006; Tesch et al., 2011; Sal-
imans et al., 2017; Mania et al., 2018) that show pa-
rameter space black-box policy search methods out-
performing state-of-the-art action space methods for
tasks with long horizon lengths.

In summary, our analysis and experimental results sug-
gests that the complexity of exploration in action space
depends on both the dimensionality of action space
and horizon, while the complexity of exploration in
parameter space solely depends on dimensionality of
parameter space, providing a natural way to trade-off
between these approaches.

2 Problem Setup

2.1 Multi-step Control: Reinforcement
Learning

We consider the problem setting of model-free policy
search with the goal of minimizing sum of costs (or
maximizing sum of rewards) over a fixed, finite hori-
zonH. In reinforcement learning (RL), this is typically
formulated using Markov Decision Processes (MDP)
(Sutton and Barto, 1998). Denote the state space of
the MDP as S ⊂ Rb, action space as A ⊂ Rp , transi-
tion probabilities as Psa = P(·|s, a) (which is the dis-
tribution of next state after executing action a ∈ A in
state s ∈ S), an initial state distribution µ, and a cost
function c(s, a) : S×A → R. Note that the cost can be
interpreted as negative of the reward. In addition to
this, we assume a restricted class of deterministic, sta-
tionary policies Π parameterized by θ ∈ Rd where each
π(θ, ·) ∈ Π is differentiable at all θ and is a mapping
from S to A, i.e. π(θ, ·) : S → A. The distribution
of states at timestep t induced by running the policy
π(θ, ·) until and including t, is defined ∀st : dtπθ (st) =

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

∑
{si}i≤t−1

µ(s0)
∏t−1
i=0 P(si+1|si, ai = π(θ, si)), where

by definition d0
πθ

(s) = µ(s) for any π. We define the
value function V tπθ (s) for t ≤ H − 1 as

V tπθ (s) = E[

H∑
i=t

c(si, π(θ, si))|st = s]

and state-action value function Qtπθ (s, a) as

Qtπθ (s, a) = c(s, a) + Es′∼Psa [V t+1
πθ

(s′)]

Throughout this work, we assume the total cost is up-
per bounded by a constant, i.e., supc1,...,cT

∑
t ct ≤

Q ∈ R+, to prevent confounding due to just a change
in the scale of total costs. We have then that Qtπθ is
upper bounded by a constant Q for all t and θ.

We seek to minimize the performance objective given
by J(θ) = Es∼µ[V 0

πθ
(s)]. Given this objective, the op-

timization problem can be formulated as:

min
θ
J(θ) (1)

The goal is to find parameters θ∗ that minimize the
expected sum of costs J(θ), given no access to the
underlying dynamics of the environment other than
samples from the distribution Psa by executing the pol-
icy π(θ, ·). However, the objective J(θ) can be highly
non-convex and finding a global minima could be in-
tractable. Thus, in this work, we hope to find a sta-
tionary point θ∗ of the objective J(θ), i.e. a point
where ∇θJ(θ) ≈ 0.

2.2 One-Step Control: Online Linear
Regression with Partial Information

The online linear regression problem is defined as fol-
lows: We denote S ⊂ Rb as the feature space, and
Θ ⊂ Rd = Rb as the linear policy parameter space
where each θ ∈ Θ represents a policy π(θ, s) = θ>s.
Online linear regression operates in an adversarial on-
line learning fashion: every round i, nature presents a
feature vector si ∈ S, the learner makes a decision by
choosing a policy θi ∈ Θ and predicts the scalar action
âi = θ>i si; nature then reveals the loss (âi−ai)2 ∈ R+,
which is just a scalar, to the learner, where ai is ground
truth selected by nature and is never revealed to the
learner. We do not place any statistical assumption on
the nature’s process of generating feature vector si and
ground truth ai, which could be completely adversar-
ial. Other than the adversarial aspect of the problem,
note that the above setup is a special setting of RL
with horizon H = 1, linear policy θ>si, one-dimension
action space, and a cost function ci(θ) = (θ>si − ai)2.
In this setting, we consider the regret with respect to

the optimal solution in hindsight,

Regret =

T∑
i=1

ci(θi)− min
θ?∈Θ

T∑
i=1

ci(θ
?) (2)

3 Online Linear Regression with
Partial Information

3.1 Exploration in Parameter Space

We can apply a zeroth-order online gradient descent
algorithm for the sequence of loss functions {ci}Ti=1,
which is summarized in Algorithm 1. The main idea
is to add random noise u, sampled from a unit sphere
in b-dim space Sb, to the parameter θ, and querying
loss at θ + δu for some δ > 0. Using the received loss
ci(θ + δu), one can form an estimation of ∇θci(θ) as
cib
δ u (Flaxman et al., 2005).

Algorithm 1 Random Search in Parameter Space
(BGD Flaxman et al. (2005))

1: Input: α ∈ R+, δ ∈ R+.
2: Learner initializes θ1 ∈ Θ.
3: for i = 1 to T do
4: Learner samples u ∼ Sb.
5: Learner chooses predictor θ′i = θi + δu.
6: Learner only receives loss signal ci(θ

′
i).

7: Learner update: θ′i+1 = θi − α cibδ u.
8: Projection θi+1 = arg minθ∈Θ ‖θ′i+1 − θ‖22.
9: end for

3.2 Exploration in Action Space

The key difference between exploration in action space
and exploration in parameter space is that we are going
to leverage our knowledge of the policy π(θ, s) = θ>s.
Since we design the policy class, we can compute its
Jacobian with respect to its parameters θ without in-
teraction with the environment. The Jacobian of the
policy gives us a locally linear relationship between a
small change in parameter and the resulting change
in policy’s action space. The main idea then in this
approach is to explore with randomization in action
space, and then leverage the Jacobian of the policy to
update the parameters θ accordingly so that the pol-
icy’s output moves towards better actions. Intuitively,
we expect that random exploration in action space will
result in smaller regret, as in our setting the action
space is just 1-dimensional, while the parameter space
is b-dimensional. The approach is summarized in Al-
gorithm 2. Denote `i = (âi − ai)2 and âi = π(θi, si) =
θ>i si. The main idea is that we can compute ∇θci(θi)
via a chain rule as ∇θci(θi) = ∂`i

∂âi
∇θπ(θi, si). Note

that ∇θπ(si, θi) = ∇θθ>i si = si is the Jacobian of the

Contrasting Exploration in Parameter and Action Space

policy to which we have full access. We then use zeroth
order approximation method to approximate ∂`i/∂âi
at âi = π(θi, si).

Algorithm 2 Random Search in Action Space

1: Input: α ∈ R+, δ ∈ R+.
2: Learner initializes θ1 ∈ Θ.
3: for i = 1 to T do
4: Learner receives feature si.
5: Learner samples e uniformly from {−1, 1}.
6: Learner makes a prediction âi = θ>i si + δe
7: Learner only receives loss signal ci = (âi − ai)2.
8: Learner update: θ′i+1 = θi − α cieδ si.
9: Projection θi+1 = arg minθ∈Θ ‖θ′i+1 − θ‖22.

10: end for

3.3 Analysis

We analyze the regret of the exploration in parameter
space algorithm (Alg. 1) and the exploration in action
space algorithm (Alg. 2) in this section. For analysis,
we assume that Θ is bounded, i.e., supθ∈Θ ‖θ‖2 ≤ Cθ ∈
R+, S is bounded, i.e., sups∈S ‖s‖2 ≤ Cs ∈ R+, and
the ground truth ai is bounded, i.e., |ai| ≤ Ca for
any i. Under the above assumptions, we can make
sure that the loss is bounded as well, (θ>s − a)2 ≤
C ∈ R+. The loss function is also Lipschitz continuous
with Lipschitz constant L ≤ (CθCs + Ca)Cs. We call
these constants Cs, Cθ, and Ca as problem dependent
constants, which are independent of feature dimension
b and number of rounds T . In regret bounds, we absorb
problem dependent constants intoO notations, but the
bounds will be explicit in b and T . The theorem below
presents the average regret analysis for these methods,

Theorem 3.1. After T rounds, with α = Cθδ

b(C2+C2
s)
√
T

and δ = T−0.25

√
Cθb(C2+C2

s)
2L , Alg. 1 incurs average

regret:

1

T
(E[

T∑
i=1

ci(θi)]− min
θ?∈Θ

T∑
i=1

ci(θ
?)) ≤ O(

√
bT−

1
4), (3)

and with α = Cθδ

(C2+1)Cs
√
T

and δ =

T−0.25
√

Cθ(C2+1)Cs
2C , Alg. 2 incurs average regret:

1

T
(E[

T∑
i=1

ci(θi)]− min
θ?∈Θ

T∑
i=1

ci(θ
?)) ≤ O(T−

1
4), (4)

for any θ ∈ Θ.

The above regret analysis essentially shows that explo-
ration in action space delivers a regret bound that is
independent of parameter space dimension b, while the
regret of the exploration in parameter space algorithm

will have explicit polynomial dependency on feature
dimension b. Converting the regret bounds to sample
complexity bounds, we have that for any ε ∈ (0, 1),

to achieve ε-average regret, Alg. 1 needs O(b
2

ε4) many
rounds, while Alg. 2 requires O(1/ε4) many rounds.

Note that in general if we have a multivariate regres-
sion problem, i.e., a ∈ Rp, regret of Algorithm 2 will
depend on

√
p as well. But from our extreme case with

p = 1, we clearly demonstrate the sharp advantage of
exploration in action space: when the action space’s
dimension is smaller than the dimension of parameter
space, we should prefer the strategy of exploration in
action space.

4 Reinforcement Learning

In this section, we study exploration in parameter
space versus exploration in action space for multi-step
control problem of model-free policy search in RL. As
explained in Section 2, we are interested in rates of
convergence to a stationary point of J(θ).

4.1 Exploration in Parameter Space

The objective defined in Section 2.1 can be optimized
directly over the space of parameters Rd. Since we
do not use first-order (or gradient) information about
the objective, this is equivalent to derivative-free (or
zeroth-order) optimization with noisy function evalu-
ations. More specifically, for a parameter vector θ, we
can execute the corresponding policy π(θ, ·) in the en-
vironment, to obtain a noisy estimate of J(θ). This
noisy function evaluation can be used to construct a
gradient estimate and an iterative stochastic gradient
descent approach can be used to optimize the objec-
tive. An algorithm that closely follows the ones pro-
posed in (Agarwal et al., 2010; Mania et al., 2018)
and optimizes over the space of parameters is shown
in Algorithm 3. Since we are working in episodic RL
setting, we can use a two-point estimate to form a
gradient estimation (Line 7 & 8 in Alg. 3), which in
general will reduce the variance of gradient estima-
tion (Agarwal et al., 2010), compared to one-point es-
timates. We will analyze the finite rate of convergence
of Algorithm 3 to a stationary point of the non-convex
objective J(θ). First, we will lay out the assumptions
and then present the convergence analysis.

Assumptions and Analysis To analyze conver-
gence to stationary point of a nonconvex objective,
we make several assumptions about the objective.
Firstly, we assume that J(θ) is differentiable with re-
spect to θ over the entire domain. We also assume
that J(θ) is G-lipschitz and L-smooth, i.e. for all
θ1, θ2 ∈ Rd, we have |J(θ1) − J(θ2)| ≤ G‖θ1 − θ2‖

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Algorithm 3 Policy Search in Parameter Space

1: Input: Learning rate α ∈ R+, standard deviation
of exploration noise δ ∈ R

2: Initialize parameters θ1 ∈ Rd
3: for i = 1 to T do
4: Sample u ∼ Sd , a d-dimensional unit sphere
5: Construct parameters θi + δu, θi − δu
6: Execute policies π(θi + δu, ·), π(θi − δu, ·)
7: Obtain noisy estimates of the objective J+

i =
J(θi+δu)+η+

i and J−i = J(θi−δu)+η−i where
η+
i , η

−
i are zero mean random i.i.d noise

8: Compute gradient estimate gi =
d(J+

i −J
−
i)

2δ u
9: Update θi+1 = θi − αgi

10: end for

and ‖∇θJ(θ1) − ∇θJ(θ2)‖ ≤ L‖θ1 − θ2‖. Note that
these assumptions are similar to the assumptions made
in other zeroth-order analysis works, (Flaxman et al.,
2005; Agarwal et al., 2010; Duchi et al., 2015; Shamir,
2013; Ghadimi and Lan, 2013; Nesterov and Spokoiny,
2017).

Our analysis is along the lines of works like (Ghadimi
and Lan, 2013; Nesterov and Spokoiny, 2017) that also
analyze the convergence to stationary points in zeroth
order non-convex optimization. The general strategy
is to first construct a smoothed version of the objective
J(θ), denoted as Ĵ(θ) = Ev∼Bd [J(θ + δv)], where Bd
is the d-dimensional unit ball. We can then show that
Algorithm 3 is essentially running SGD on the objec-
tive function Ĵ(θ), which allows us to apply standard
SGD analysis on Ĵ(θ). Lastly we link the stationary
point of the smoothed objective Ĵ(θ) to that of the
objective J(θ) using the assumptions on J(θ).

Theorem 4.1. Consider running Algorithm 3 for T
steps where the true objective J(θ) satisfies the as-
sumptions stated above. Then we have,

1

T

T∑
i=1

E‖∇θJ(θi)‖22 ≤ O(Q 1
2 dT

−1
2 +Q 1

3 d
2
3T
−1
3 σ) (5)

where J(θ) ≤ Q for all θ ∈ Θ and σ2 is the variance
of the random noise η in Algorithm 3.

The above theorem gives us a convergence rate to a
stationary point of policy search in parameter space.
The role of variance of i.i.d noise in the noisy evalua-
tions of the true objective is very important. Consider
the case where there is little stochasticity in the en-
vironment dynamics, i.e. σ → 0, then the first term
in Equation 5 becomes dominant and we only need

at most O(d
2Q
ε2) samples to reach a point θ where

E‖∇θJ(θ)‖22 ≤ ε. However, if there is a lot of stochas-
ticity in the environment dynamics then the second

term is dominant and we need at most O(d
2Qσ3

ε3) sam-
ples. It is interesting to observe the direct impact that
the stochasticity of environment dynamics has on con-
vergence rate of policy search, which is also experi-
mentally demonstrated in Sec. 5.2. Note that the con-
vergence rate has no dependency on horizon length H
because of the regularity assumption we used on total
reward: J is always bounded by a constant Q that is
independent of H. However, as we will see later, even
under the regularity assumption convergence rate of
action space exploration methods have an explicit de-
pendence on H which will prove to be the primary
reason why black-box parameter space policy search
methods in (Mania et al., 2018) have been so effective
when compared to action space methods.

4.2 Exploration in Action Space

Another way to optimize the objective defined in Sec-
tion 2.1 is to optimize over the space of actions A.
From (Silver et al., 2014), we know that for J(θ) =
Es∼µ[V 0

πθ
(s)] we can express the gradient as

∇θJ(θ) =

H−1∑
t=0

Est∼dtπθ [∇θπ(θ, st)∇aQtπθ (st, π(θ, st))]

(6)

Observe that the first term in the above gradient
∇θπ(θ, s) is the Jacobian of the policy, the local linear
relationship between a small change in policy param-
eters θ and a small change in its output, i.e., actions.
The second term ∇aQ(s, a) is actually the improve-
ment direction at state action pair (s, a), i.e., condi-
tioned on state s, if we move action a an infinitesimally
small step along the negative gradient −∇aQ(s, a), we
decrease the cost-to-go Q(s, a). Eqn 6 then leverages
policy’s Jacobian to transfer the improvement direc-
tion in action space to an improvement direction in
parameter space.

We can compute Jacobian∇θπ(θ, s) exactly as we have
knowledge of the policy function, i.e, we can leverage
the first-order information of the parameterized pol-
icy. The second term ∇aQtπθ (s, π(θ, st)), however, is
unknown as it depends on the dynamics and cost func-
tions and needs to be estimated by interacting with the
environment. We could employ a similar algorithm as
Algorithm 3, shown in Algorithm 4, to obtain an esti-
mate of the gradient ∇aQtπθ (s, π(θ, st)), i.e., a zeroth

order estimation of ∇aQtπθ , computed as pQ̃i
δ u, where

Q̃i is an unbiased estimate of Qtπθi
(st, π(θi, st) + δu),

with u ∼ Sp (Line 7 & 9 in Alg. 4).

Another important difference from Algorithm 3 is the
fact that we use a one-point estimate for the gradient
gi in Algorithm 4. We cannot employ the idea of two-

Contrasting Exploration in Parameter and Action Space

point estimate in random exploration in action space
to reduce the variance of the estimate of ∇aQtπθ (st, a).
This is due to the fact that environment is stochastic,
and we cannot guarantee that we will reach the same
state st at any two independent roll-ins with πθ at time
step t. Similar to Section 4.1, we will analyze the rate

Algorithm 4 Policy Search in Action Space

1: Input: Learning rate α ∈ R+, standard devia-
tion of exploration noise δ ∈ R, Horizon length H,
Initial state distribution µ

2: Initialize parameters θ1 ∈ Rd
3: for i = 1 to T do
4: Sample u ∼ Sp , a p-dimensional unit sphere
5: Sample uniformly t ∈ {0, · · · , H − 1}
6: Execute policy π(θi, ·) until t− 1 steps
7: Execute perturbed action at = π(θi, st) + δu

at timestep t and continue with policy π(θi, ·)
until timestep H − 1 to obtain an estimate
Q̃i = Qtπθi

(st, π(θi, st) + δu) + η̃i where η̃i is

zero mean random noise
8: Compute policy Jacobian Ψi = ∇θπ(θi, st)

9: Compute gradient estimate gi = HΨi
pQ̃i
δ u

10: Update θi+1 = θi − αgi
11: end for

of convergence of Algorithm 4 to a stationary point of
the objective J(θ). The following section will lay out
the assumptions and present the convergence analysis.

Assumptions and Analysis The assumptions for
policy search in action space are similar to the assump-
tions in Section 4.1. We assume that J(θ) is differen-
tiable with respect to θ over the entire domain. We
also assume that J(θ) is G-lipschitz and L-smooth. In
addition to these assumptions, we will assume that the
policy function π(θ, s) is K-lipschitz in θ and the state-
action value function Qtπθ (s, a) is W -lipschitz and U -
smooth in a. Finally, we assume that the state-action
value function Q(s, a) is differentiable with respect to
a over the entire domain. Note that the Lipschitz as-
sumptions above on J(θ), Qtπθ (s, a), and π(θ, s) are
also used in the analysis of Deterministic policy gradi-
ent (Silver et al., 2014). We need extra smoothness as-
sumption to study the convergence of our algorithms.

Note that the gradient estimate gi used in Algorithm
4 is a biased estimate of ∇θJ(θ). We can show this by
considering

Ei[gi] = EtEst∼dtπθi

[
H∇θπ(θi, st)Eu∼Sp

[
pQ̃i
δ
u

]]

where Ei denotes expectation with respect to the ran-
domness at iteration i. From (Flaxman et al., 2005),

we have that E[pQ̃iδ u] = ∇aEv∼Bp [Qtπθi
(st, π(θi, st) +

δv)] so we can rewrite the above equation as

E[gi] =

H−1∑
t=0

Est∼dtπθi
Ev∼Bp [∇θπ(θi, st)

∇aQtπθi (st, π(θi, st) + δv)]

Comparing the above expression with equation 6, we
can see that gi is not an unbiased estimate of the gra-
dient ∇θJ(θ). We can also explicitly upper bound the
variance of gi by Ei‖gi‖22. Note that in the limit when
δ → 0, gi becomes an unbiased estimate of∇θJ(θ), but
the variance will approach to infinity. In our analysis,
we explicitly tune δ to balance the bias and variance.

Theorem 4.2. Consider running Algorithm 4 for T
steps where the objective J(θ) satisfies the assumptions
stated above. Then, we have

1

T

T∑
i=1

E‖∇θJ(θi)‖22 ≤ O(T−
1
4Hp

1
2 (Q3 + σ2Q)

1
4) (7)

where J(θ) ≤ Q for all θ ∈ Θ and σ2 is the variance
of the random noise η̃ in Algorithm 4.

The above theorem gives us a convergence rate to a
stationary point of J(θ) for policy search in action
space. This means that to reach a point θ where
E‖∇θJ(θ)‖22 ≤ ε, policy search in action space needs

at most O
(
p2H4

ε4 (Q3 + σ2Q)
)

samples. Interestingly,

the convergence rate has a dependence on the hori-
zon length H, unlike policy search in parameter space.
Also, observe that the convergence rate has no depen-
dence on the parameter dimensionality d as we have
complete knowledge of the Jacobian of policy, and we
have a dependence on stochasticity of the environment
σ that slows down the convergence as the stochasticity
increases, similar to policy search in parameter space.

5 Experiments

Given the analysis presented in the previous sections,
we test the convergence properties of parameter and
action space policy search approaches across several
experiments: Contextual Bandit with rich observa-
tions, Linear Regression, RL benchmark tasks and Lin-
ear Quadratic Regulator (LQR). We use Augmented
Random Search (ARS), from (Mania et al., 2018), as
the policy search in parameter space method in our ex-
periments as it has been empirically shown to be effec-
tive in RL tasks. For policy search in action space, we
use either REINFORCE (Williams, 1992), or ExAct
(Exploration in Action Space), the method described
by Algorithm 4. In all the plots shown, solid lines rep-
resent the mean estimate over 10 random seeds and

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

0 2 4 6 8 10
Number of samples (multiples of 105)

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

MNIST Experiment

ars
reinforce
sgd

Figure 1: Mean test accuracy with standard error for
different approaches against number of samples

shaded regions correspond to ±1 standard error. The
code for all our experiments can be found here12.

5.1 One-Step Control

In these sets of experiments, we test the convergence
rate of policy search methods for one time-step predic-
tion. The objective is to minimize the instantaneous
cost incurred. The motivation behind such experi-
ments is that we want to understand the dependence
of different policy search methods on parametric di-
mensionality d without the effect of horizon length H.

MNIST as a Contextual Bandit Our first set of
experiments is the MNIST digit recognition task (Le-
Cun et al., 1998). To formulate the task in an RL
framework, we consider a sequential decision making
problem where at each time-step the agent is given
the features of the image and needs to predict one of
ten actions (corresponding to digits). A reward of +1
is given for predicting the correct digit, and a reward
of −1 for an incorrect prediction. With this reduc-
tion, the problem is essentially a Contextual Bandit
Problem (Agarwal et al., 2014). We use a standard
LeNet-style convolutional architecture, (LeCun et al.,
1998), with d = 21840 trainable parameters. Figure
1 shows the learning curves for SGD under standard
full-information supervised learning setting with cross
entropy loss, REINFORCE and ARS. We can observe
that in this setting where the parameter space dimen-
sionality d significantly exceeds the action space di-
mensionality p = 1, policy search in action space out-
performs parameter space methods.

Linear Regression with Partial Information
These set of experiments are designed to understand
how the sample complexity of different policy search

1https://github.com/LAIRLAB/contrasting_
exploration_rl

2https://github.com/LAIRLAB/ARS-experiments

methods vary as the parametric complexity is var-
ied. More specifically, from our analysis in Section 3,
we know that sample complexity of parameter space
methods have a dependence on d, the parametric com-
plexity, whereas action space methods have no depen-
dence on d. We test this hypothesis in this experi-
ment using artificial data with varying input dimen-
sionality and output scalar values. Figure 2 shows
the learning curves for standard full-information su-
pervised learning approaches with full access to the
square loss (SGD & Newton), REINFORCE, natu-
ral REINFORCE (Kakade, 2002), and ARS as we in-
crease the input dimensionality, and hence parametric
dimensionality d. Note that we have not included nat-
ural REINFORCE and Newton method in Figure 2c as
extensive hyperparameter search for these methods is
computationally expensive in such high dimensionality
settings. The learning curves in Figure 2 match our
expectations, and show that action space policy search
methods do not degrade as parametric dimensionality
increases whereas parameter space methods do. More-
over, action space methods lie between the curves of
supervised learning and parameter space methods as
they take advantage of the Jacobian of the policy and
learn more quickly than parameter space methods.

5.2 Multi-Step Control

The above experiments provide insights on the depen-
dence of policy search methods on parametric dimen-
sionality d. We now shift our focus on to the depen-
dence on horizon length H. In this set of experiments,
we extend the time horizon and test the convergence
rate of policy search methods for multi-step control.
The objective is to minimize the sum of costs incurred
over a horizon H, i.e. J(θ) = E[

∑T
t=1 c(st, at)]. Ac-

cording to our analysis, we expect action space policy
search methods to have a dependence on the horizon
length H.

We test ARS and ExAct on two popular continuous
control simulated benchmark tasks in OpenAI gym
(Brockman et al., 2016a): Swimmer and HalfCheetah.
We chose these two environments as they allow you
to vary the horizon length H without terminating the
task early. For both tasks, we use linear policies as
they have been shown to be very effective in (Mania
et al., 2018; Rajeswaran et al., 2017). Swimmer has
an observation space dimensionality of d = 8 and a
continuous action space of dimensionality p = 2. Sim-
ilarly, for HalfCheetah d = 17 and p = 6. Figures
3a and 3b show the performance of both approaches
in terms of the mean return J(θ) (expected sum of
rewards) they obtain as the horizon length H varies.
Note that both approaches are given access to the same
number of samples 104×H from the environments for

Contrasting Exploration in Parameter and Action Space

102 103 104 105

Number of samples

0

10

20

30

40

50

60

Te
st

 sq
ua

re
d

lo
ss

Linear regression with dimensionality 10
ars
reinforce
sgd
n_reinforce
newton

(a) d = 10

102 103 104 105

Number of samples

0

5

10

15

20

25

30

Te
st

 sq
ua

re
d

lo
ss

Linear regression with dimensionality 100
ars
reinforce
sgd
n_reinforce
newton

(b) d = 100

103 104 105

Number of samples

0

5

10

15

20

25

Te
st

 sq
ua

re
d

lo
ss

Linear regression with dimensionality 1000
ars
reinforce
sgd

(c) d = 1000

Figure 2: Linear Regression Experiments with varying input dimensionality

2 4 6 8 10 12 14
Horizon Length H

0

2

4

6

8

10

12

M
ea

n
Re

tu
rn

Plot of Mean Return vs Horizon Length H
 for Swimmer-v2

ARS
ExAct

(a) Swimmer

2 4 6 8 10 12 14
Horizon Length H

0

1

2

3

4

5

6

7
M

ea
n

Re
tu

rn

Plot of Mean Return vs Horizon Length H
 for HalfCheetah-v2

ARS
ExAct

(b) HalfCheetah

10 4 10 3 10 2 10 1

Standard deviation of the noise in LQR dynamics
30

40

50

60

70

80

90

100

Nu
m

be
r o

f s
am

pl
es

 (m
ul

tip
le

s o
f 1

04)

Plot of number of samples vs std dev
of noise in LQR dynamics

ARS
ExAct

(c) LQR

Figure 3: Multi-step Control. Figures 3a and 3b show performance of different methods as horizon length varies.
Figure 3c shows number of samples needed to reach close to a stationary point as noise in dynamics varies

each horizon length H. In the regime of short horizon
lengths, action space methods are better than param-
eter space methods as they do not have a dependence
on parametric complexity d. However, as the horizon
length increases, parameter space methods start out-
performing action space methods handily as they do
not have an explicit dependence on the horizon length,
as pointed out by our analysis. We have observed the
same trend of parameter space methods handily out-
performing action space methods as far as H = 200
and expect this trend to continue beyond. This em-
pirical insight combined with our analysis presented in
Sections 4.1, 4.2 explains why ARS, a simple param-
eter space search method, outperformed state-of-the-
art actor critic action space search methods in (Mania
et al., 2018) on OpenAI gym benchmarks where the
horizon length H is typically as high as 1000.

Effect of environment stochasticity In this final
set of experiments, we set out to understand the ef-
fect of stochasticity in environment dynamics on the
performance of policy search methods. As our analy-
sis in Sections 4.1 and 4.2 points out, the stochasticity
of the environment plays an important role in control-
ling the variance of our gradient estimates in zeroth
order optimization procedures. To empirically observe
this, we use a stochastic LQR environment where we
have access to the true cost function c and hence, can

compute the gradient ∇θJ(θ) exactly. Given access
to such information, we vary the standard deviation σ
of the noise in LQR dynamics and observe the num-
ber of samples needed for ARS to reach θ such that
‖∇θJ(θ)‖22 ≤ 0.05. Figure 3c presents the number of
samples needed to reach close to a stationary point of
J(θ) as the standard deviation of noise in LQR dynam-
ics varies. Note that we limit the maximum number
of samples to 106 for each run. The results match
our expectations from the analysis, where we observed
that as the stochasticity of the environment increases,
convergence rate of policy search methods slows down.

6 Conclusion

Parameter space exploration via black-box optimiza-
tion methods have often been shown to outperform
sophisticated action space exploration approaches for
the reinforcement learning problem. Our work high-
lights the major difference between parameter and ac-
tion space exploration methods: the latter leverages
Jacobian of the parameterized policy. This allows sam-
ple complexity of action space exploration methods
to be independent of parameter space dimensionality
and only dependent on the dimensionality of action
space and horizon length. For domains where the ac-
tion space dimensionality and horizon length are small

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

and the dimensionality of parameter space is large, we
conclude that exploration in action space should be
preferred. On the other hand, for long horizon control
problems with low dimensional policy parameteriza-
tion, exploration in parameter space will outperform
exploration in action space.

Acknowledgements The authors would like to
thank the anonymous reviewers for their useful com-
ments, the entire LairLab for stimulating discussions
and Ben Recht for his interesting blog posts.

References

Agarwal, A., Dekel, O., and Xiao, L. (2010). Opti-
mal algorithms for online convex optimization with
multi-point bandit feedback. In COLT, pages 28–40.
Citeseer.

Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L.,
and Schapire, R. (2014). Taming the monster: A
fast and simple algorithm for contextual bandits.
In International Conference on Machine Learning,
pages 1638–1646.

Bagnell, J. A., Kakade, S. M., Schneider, J. G., and
Ng, A. Y. (2004). Policy search by dynamic pro-
gramming. In Advances in neural information pro-
cessing systems, pages 831–838.

Bagnell, J. A. and Schneider, J. G. (2001). Au-
tonomous helicopter control using reinforcement
learning policy search methods. In Robotics and
Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 2, pages 1615–
1620. IEEE.

Brockman, G., Cheung, V., Pettersson, L., Schnei-
der, J., Schulman, J., Tang, J., and Zaremba, W.
(2016a). Openai gym.

Brockman, G., Cheung, V., Pettersson, L., Schnei-
der, J., Schulman, J., Tang, J., and Zaremba,
W. (2016b). Openai gym. arXiv preprint
arXiv:1606.01540.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A.
(2017a). Lower bounds for finding stationary points
i. arXiv preprint arXiv:1710.11606.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford,
A. (2017b). Lower bounds for finding station-
ary points ii: First-order methods. arXiv preprint
arXiv:1711.00841.

Duchi, J. C., Jordan, M. I., Wainwright, M. J., and
Wibisono, A. (2015). Optimal rates for zero-order
convex optimization: The power of two function
evaluations. IEEE Transactions on Information
Theory, 61(5):2788–2806.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B.
(2005). Online convex optimization in the bandit
setting: gradient descent without a gradient. In Pro-
ceedings of the sixteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 385–394. Society
for Industrial and Applied Mathematics.

Ghadimi, S. and Lan, G. (2013). Stochastic first-
and zeroth-order methods for nonconvex stochas-
tic programming. SIAM Journal on Optimization,
23(4):2341–2368.

Heidrich-Meisner, V. and Igel, C. (2008). Evolution
strategies for direct policy search. In International
Conference on Parallel Problem Solving from Na-
ture, pages 428–437. Springer.

Kakade, S. (2002). A natural policy gradient. NIPS.

Kakade, S. and Langford, J. (2002). Approximately
optimal approximate reinforcement learning. In
ICML.

Kingma, D. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Rein-
forcement learning in robotics: A survey. The Inter-
national Journal of Robotics Research, 32(11):1238–
1274.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner,
P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Mania, H., Guy, A., and Recht, B. (2018). Sim-
ple random search provides a competitive ap-
proach to reinforcement learning. arXiv preprint
arXiv:1803.07055.

Mannor, S., Rubinstein, R. Y., and Gat, Y. (2003).
The cross entropy method for fast policy search. In
Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pages 512–519.

Nesterov, Y. and Spokoiny, V. (2017). Ran-
dom gradient-free minimization of convex func-
tions. Foundations of Computational Mathematics,
17(2):527–566.

Peters, J. and Schaal, S. (2008). Reinforcement learn-
ing of motor skills with policy gradients. Neural
networks, 21(4):682–697.

Rajeswaran, A., Lowrey, K., Todorov, E. V., and
Kakade, S. M. (2017). Towards generalization
and simplicity in continuous control. In Advances
in Neural Information Processing Systems, pages
6550–6561.

Salimans, T., Ho, J., Chen, X., Sidor, S., and
Sutskever, I. (2017). Evolution strategies as a scal-

Contrasting Exploration in Parameter and Action Space

able alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I.,
and Moritz, P. (2015). Trust region policy optimiza-
tion. In ICML, pages 1889–1897.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A.,
Peters, J., and Schmidhuber, J. (2010). Parameter-
exploring policy gradients. Neural Networks,
23(4):551–559.

Shamir, O. (2013). On the complexity of bandit and
derivative-free stochastic convex optimization. In
Conference on Learning Theory, pages 3–24.

Shamir, O. (2017). An optimal algorithm for bandit
and zero-order convex optimization with two-point
feedback. Journal of Machine Learning Research,
18(52):1–11.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra,
D., and Riedmiller, M. (2014). Deterministic policy
gradient algorithms. In ICML.

Sutton, R. S. and Barto, A. G. (1998). Introduction
to reinforcement learning, volume 135. MIT Press
Cambridge.

Szita, I. and Lörincz, A. (2006). Learning tetris using
the noisy cross-entropy method. Neural computa-
tion, 18(12):2936–2941.

Tesch, M., Schneider, J., and Choset, H. (2011). Us-
ing response surfaces and expected improvement to
optimize snake robot gait parameters. In Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ Inter-
national Conference on, pages 1069–1074. IEEE.

Tu, S. and Recht, B. (2018). The gap between
model-based and model-free methods on the lin-
ear quadratic regulator: An asymptotic viewpoint.
arXiv preprint arXiv:1812.03565.

Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M.
(2011). Analysis and improvement of policy gradi-
ent estimation. In Advances in Neural Information
Processing Systems, pages 262–270.

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

A Proof of Theorem 3.1

Proof of Theorem 3.1. To prove Eq. 3 for Alg. 1, we use the proof techniques from Flaxman et al. (2005). The
proof is more simpler than the one in Flaxman et al. (2005) as we do not have to deal with shrinking and
reshaping the predictor set Θ.

Denote u ∼ Bb as uniformly sampling u from a b-dim unit ball, u ∼ Sb as uniformly sampling u from the b-dim
unit sphere, and δ ∈ (0, 1). Consider the loss function ĉi(wi) = Ev∼Bb [ci(θi + δv)], which is a smoothed version
of ci(wi). It is shown in Flaxman et al. (2005) that the gradient of ĉi with respect to θ is:

∇θ ĉi(θ)|θ=θi

=
b

δ
Eu∼Sb [ci(θi + δu)u]

=
b

δ
Eu∼Sb [((θi + δu)T si − ai)2u].

Hence, the descent direction we take in Alg. 1 is actually an unbiased estimate of ∇θ ĉi(θ)|θ=θi . So Alg. 1 can
be considered as running OGD with an unbiased estimate of gradient on the sequence of loss ĉi(θi). It is not
hard to show that for an unbiased estimate of ∇θ ĉi(θ)|θ=θi = b

δ ((θi + δu)T si − ai)2u, the norm is bounded as
b(C2 + C2

s)/δ. Now we can directly applying Lemma 3.1 from Flaxman et al. (2005), to get:

E

[
T∑
i=1

ĉi(θi)

]
− min
θ?∈Θ

T∑
i=1

ĉi(θ
?) ≤ Cθb(C

2 + C2
s)

δ

√
T . (8)

We can bound the difference between ĉi(θ) and ci(θ) using the Lipschitiz continuous property of ci:

|ĉi(θ)− ci(θ)| = |Ev∼Bb [ci(θ + δv)− ci(θ)]|
≤ Ev∼Bb [|ci(θ + δv)− ci(θ)|] ≤ Lδ. (9)

Substitute the above inequality back to Eq. 8, rearrange terms, we get:

E

[
T∑
i=1

ci(θi)

]
− min
θ?∈Θ

T∑
i=1

ci(w
?)

≤ Cθb(C
2 + C2

s)

δ

√
T + 2LTδ. (10)

By setting δ = T−0.25

√
Cθb(C2+C2

s)
2L , we get:

E

[
T∑
i=1

ci(θi)

]
− min
w?∈Θ

T∑
i=1

ci(w
?)

≤
√
Cθb(C2 + C2

s)LT 3/4.

To prove Eq. 4 for Alg. 4, we follow the similar strategy in the proof of Alg. 1.

Denote ε ∼ [−1, 1] as uniformly sampling ε from the interval [−1, 1], e ∼ {−1, 1} as uniformly sampling e from
the set containing −1 and 1. Consider the loss function c̃i(θ) = Eε∼[−1,1][(θ

T si + δε− ai)2]. One can show that
the gradient of c̃i(θ) with respect to θ is:

∇θ c̃i(θ) =
1

δ
Ee∼{−1,1}[e(θ

>si + δe− ai)2si]. (11)

As we can see that the descent direction we take in Alg. 4 is actually an unbiased estimate of ∇θ c̃i(θ)|θ=θi . Hence
Alg. 4 can be considered as running OGD with unbiased estimates of gradients on the sequence of loss functions
c̃i(θ). For an unbiased estimate of the gradient, 1

δ e(θ
>
i si+δe−ai)2si, its norm is bounded as (C2 +1)Cs/δ. Note

Contrasting Exploration in Parameter and Action Space

that different from Alg. 1, here the maximum norm of the unbiased gradient is independent of feature dimension
b. Now we apply Lemma 3.1 from Flaxman et al. (2005) on c̃i, to get:

E

[
T∑
i=1

c̃i(θi)

]
− min
θ?∈Θ

T∑
i=1

c̃i(θ
∗) ≤ Cθ(C

2 + 1)Cs
δ

√
T . (12)

Again we can bound the difference between c̃i(θ) and ci(θ) for any θ using the fact that (âi − ai)2 is Lipschitz
continuous with respect to prediction âi with Lipschitz constant C:

|c̃i(θ)− ci(θ)| = |Eε∼[−1,1][(θ
>si + δε− ai)2 − (θ>si − ai)2]|

≤ Eε∼[−1,−1][Cδ|ε|] ≤ Cδ. (13)

Substitute the above inequality back to Eq. 12, rearrange terms:

E

[
T∑
i=1

c̃i(θi)

]
− min
θ?∈Θ

T∑
i=1

c̃i(θ
∗)

≤ Cθ(C
2 + 1)Cs
δ

√
T + 2CδT.

Set δ = T−0.25
√

Cθ(C2+1)Cs
2C , we get:

E

[
T∑
i=1

c̃i(θi)

]
− min
θ∗∈Θ

T∑
i=1

c̃i(θ
∗)

≤
√
Cθ(C2 + 1)CsCT

3/4.

B Proof of Theorem 4.1

We first present some useful lemmas below.

Consider the smoothed objective given by Ĵ(θ) = Ev∼Bd [J(θ+ δv)] where Bd is the unit ball in d dimensions and
δ is a positive constant. Using the assumptions stated in Section 4.1, we obtain the following useful lemma:

Lemma B.1. If the objective J(θ) satisfies the assumptions in Section 4.1 and the smoothed objective Ĵ(θ) is
as given above, then we have that

1. Ĵ(θ) is also G-Lipschitz and L-smooth

2. For all θ ∈ Rd, ‖∇θJ(θ)−∇θĴ(θ)‖ ≤ Lδ

Proof of Lemma B.1. Consider for any θ1, θ2 ∈ Rd,

|Ĵ(θ1)− Ĵ(θ2)| = |Ev∼Bd [J(θ1 + δv)− J(θ2 + δv)]|
≤ Ev∼Bd [|J(θ1 + δv)− J(θ2 + δv)|]
≤ Ev∼Bd [G‖θ1 − θ2‖]
= G‖θ1 − θ2‖

The above inequalities are due to the fact that expectation of absolute value is greater than absolute value of
expectation, and the G-lipschitz assumption on J(θ). Thus, the smoothened loss function Ĵ(θ) is also G-lipschitz.
Similarly consider,

‖∇θĴ(θ1)−∇θĴ(θ2)‖
= ‖∇θEv∼Bd [J(θ1 + δv)]−∇θEv∼Bd [J(θ2 + δv)]‖

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

= ‖Ev∼Bd [∇θJ(θ1 + δv)−∇θJ(θ2 + δv)]‖
≤ Ev∼Bd [‖∇θJ(θ1 + δv)−∇θJ(θ2 + δv)‖]
≤ Ev∼Bd [L‖θ1 − θ2‖]
= L‖θ1 − θ2‖

The above inequalities are due to the fact that expectation of norm is greater than norm of expectation, and
the L-smoothness assumption on J(θ1). We interchange the expectation and derivative using the assumptions
on J(θ1) and the dominated convergence theorem. Thus, the smoothened loss function Ĵ(θ1) is also L-smooth.

We know,

∇θĴ(θ) = ∇θEv∼Bd [J(θ + δv)]

= Ev∼Bd [∇θJ(θ + δv)]

Note that the expectation and derivative can be interchanged using the dominated convergence theorem. Hence,
we have

‖∇θĴ(θ)−∇θJ(θ)‖ = ‖Eu∼Bd [∇θJ(θ + δv)]−∇θJ(θ)‖
≤ Eu∼Bd‖∇θJ(θ + δv)−∇θJ(θ)‖
≤ Eu∼Bd [L||δv||]
≤ Lδ

The above lemma will be very useful later when we try to relate the convergence rate for the smoothed objective
and the true objective. It is shown in (Flaxman et al., 2005; Agarwal et al., 2010) that the gradient estimate
gi is an unbiased estimator of the gradient ∇θĴ(θi). Hence, Algorithm 3 is performing SGD on the smoothed
objective Ĵ(θ). Using this insight, we can use the convergence rate of SGD for nonconvex functions to stationary
points from (Ghadimi and Lan, 2013) which is given as follows

Lemma B.2 ((Ghadimi and Lan, 2013)). Consider running SGD on the objective Ĵ(θ) that is L-smooth and
G-Lipschitz for T steps. Fix initial solution θ0 and denote ∆0 = Ĵ(θ0) − Ĵ(θ∗) where θ∗ is the point at which
Ĵ(θ) attains global minimum. Also, assume that the gradient estimate gi is unbiased and has a bounded variance,
i.e. for all i, Ei[‖gi − ∇θĴ(θi)‖22] ≤ V ∈ R+ where Ei denotes expectation with randomness only at iteration i
conditioned on history upto iteration i− 1. Then we have,

1

T

T∑
i=1

E‖∇θĴ(θi)‖22 ≤
2
√

2∆0L(V +G2)√
T

(14)

For completeness, we include a proof of the above lemma below.

Proof of Lemma B.2. Denote ξi = gi−∇θĴ(θi). Note that Ei[ξi] = 0 since the stochastic gradient gi is unbiased.
From θi+1 = θi − αgi, we have:

Ĵ(θi+1) = Ĵ(θi − αgi)

≤ Ĵ(θi)−∇θĴ(θi)
>(αgi) +

Lα2

2
‖gi‖22

= Ĵ(θi)− α∇θĴ(θi)
>gi +

Lα2

2
‖ξi +∇θĴ(θi)‖22

= Ĵ(θi)− α∇θĴ(θi)
>gi +

Lα2

2
(‖ξi‖22

+ 2ξ>i ∇θĴ(θi) + ‖∇θĴ(θi)‖22)

The first inequality above is obtained since the loss function Ĵ(θ) is L-smooth. Adding Ei on both sides and
using the fact that Ei[ξi] = 0, we have:

Ei[Ĵ(θi+1)] = Ĵ(θi)− α‖∇θĴ(θi)‖22

Contrasting Exploration in Parameter and Action Space

+
Lα2

2

(
Ei[‖ξi‖22] + ‖∇θĴ(θi)‖22

)
≤ Ĵ(θi)− α‖∇θĴ(θi)‖22

+
Lα2

2

(
Ei[‖ξi‖22] +G2

)
where the inequality is due to the lipschitz assumption. Rearranging terms, we get:

α‖∇θĴ(θi)‖22 = Ĵ(θi)− Ei[Ĵ(θi+1)]

+
Lα2

2
(Ei[‖ξi‖22] +G2)

≤ Ĵ(θi)− Ei[Ĵ(θi+1)] +
Lα2

2
(V +G2)

Sum over from time step 1 to T , we get:

α

T∑
t=1

E‖∇θĴ(θi)‖22 ≤ E[Ĵ(θ0)− Ĵ(θT)]

+
LTα2

2
(V +G2)

Divide α on both sides, we get:

T∑
t=1

E‖∇θĴ(θi)‖22 ≤
1

α
E[Ĵ(θ0)− Ĵ(θT)] + LTα(V +G2)

≤ 1

α
E[Ĵ(θ0)− Ĵ(θ∗)] + LTα(V +G2)

=
1

α
∆0 + LTα(V +G2)

≤
√

∆0LT (V +G2)

2
+
√

2∆0LT (V +G2)

≤ 2
√

2∆0LT (V +G2)

with α =
√

2∆0

LT (V+G2) . Hence, we have:

1

T

T∑
t=1

E‖∇θĴ(θi)‖22 ≤
2
√

2∆0L(V +G2)√
T

The above lemma is useful as it gives us the following result:

min
1≤i≤T

E‖∇θĴ(θi)‖22 ≤
1

T

T∑
i=1

E‖∇θĴ(θi)‖22

≤
2
√

2∆0L(V +G2)√
T

(15)

since the minimum is always less than the average. We have then that using SGD to minimize a nonconvex
objective finds a θi that is ‘almost’ a stationary point in bounded number of steps provided the stochastic gradient
estimate has bounded variance.

We now show that the gradient estimate gi used in Algorithm 3 indeed has a bounded variance. Observe that
the estimate gi in the algorithm is a two-point estimate, which should have substantially less variance than
one-point estimates (Agarwal et al., 2010). However, the two evaluations, resulting in J+

i and J−i , have different
independent noise. This is due to the fact that in policy search, stochasticity arises from the environment
and cannot be controlled and we cannot obtain the significant variance reduction that is typical of two-point
estimators. The following lemma quantifies the bound on the variance of gradient estimate gi:

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Lemma B.3. Consider a smoothed objective Ĵ(θ) = Ev∼Bd [J(θ+ δv)] where Bd is the unit ball in d dimensions,

δ > 0 is a scalar and the true objective J(θ) is G-lipschitz. Given gradient estimate gi =
d(J+

i −J
−
i)

2δ u where u is

sampled uniformly from a unit sphere Sd in d dimensions, J+
i = J(θi + δu) + η+

i and J−i = J(θ − δu) + η−i for
zero mean random i.i.d noises η+

i , η
−
i , we have

Ei[‖gi −∇θĴ(θi)‖22] ≤ 2d2G2 + 2
d2σ2

δ2
(16)

where σ2 is the variance of the random noise η.

Proof of Lemma B.3. From Shamir (2017), we know that gi is an unbiased estimate of the gradient of Ĵ(θi), i.e.
Eui∼Sd [gi] = ∇Ĵ(θi). Thus, we have

Eui∼Sd‖gi −∇Ĵ(θi)‖2

= Eui∼Sd [‖gi‖2 + ‖∇Ĵ(θ)i‖2 − 2gTi ∇Ĵ(θi)]

= Eui∼Sd‖gi‖2 + ‖∇Ĵ(θi)‖2 − 2‖∇Ĵ(θi)‖2

= Eui∼Sd‖gi‖2 − ‖∇Ĵ(θi)‖2

≤ Eui∼Sd‖gi‖2

=
d2

4δ2
Eui∼Sd‖(J(θi + δui)− J(θi − δui)

+ (η+
i − η

−
i))ui‖2

≤ d2

2δ2
[Eui∼Sd‖(J(θi + δui)− J(θi − δui)ui‖22

+ Eui∼Sd‖(η
+
i − η

−
i))ui‖2]

≤ d2

2δ2
[Eui∼Sd4G2δ2‖ui‖2 + 4Eui∼Sd‖η

+
i ‖

2
2‖ui‖22]

= 2d2G2 + 2
d2σ2

δ2

where the second inequality is true as ‖a+ b‖22 ≤ 2(‖a‖22 + ‖b‖22) and the last inequality is due to the Lipschitz
assumption on J(θ).

We are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Fix initial solution θ0 and denote ∆0 = Ĵ(θ0)−Ĵ(θ∗) where Ĵ(θ) is the smoothed objective
and θ∗ is the point at which Ĵ(θ) attains global minimum. Since the gradient estimate gi used in Algorithm
3 is an unbiased estimate of the gradient ∇θĴ(θi), we know that Algorithm 3 performs SGD on the smoothed
objective. Moreover, from Lemma B.3, we know that the variance of the gradient estimate gi is bounded. Hence,
we can use Lemma B.2 on the smoothed objective Ĵ(θ) to get

1

T

T∑
i=1

E‖∇θĴ(θi)‖22 ≤
2
√

2∆0L(V +G2)√
T

(17)

where V ≤ 2d2G2+2d
2σ2

δ2 (from Lemma B.3). We can relate∇θĴ(θ) and∇θJ(θ) - the quantity that we ultimately
care about, as follows:

1

T

T∑
i=1

E‖∇θJ(θi)‖22

=
1

T

T∑
i=1

E‖∇θJ(θi)−∇θĴ(θi) +∇θĴ(θi)‖22

Contrasting Exploration in Parameter and Action Space

≤ 2

T

T∑
i=1

E‖∇θJ(θi)−∇θĴ(θi)‖22 + E‖∇θĴ(θi)‖22

We can use Lemma B.1 to bound the first term and Equation 17 to bound the second term. Thus, we have

1

T

T∑
i=1

E‖∇θJ(θi)‖22 ≤
2

T
[TL2δ2 + 2

√
2∆0L(V +G2)T]

Substituting the bound for V from Lemma B.3, using the inequality
√
a+ b ≤

√
a+
√
b for a, b ∈ R+, optimizing

over δ, and using ∆0 ≤ Q we get

1

T

T∑
i=1

E‖∇θJ(θi)‖22 ≤ O(Q 1
2 dT

−1
2 +Q 1

3 d
2
3T
−1
3 σ)

C Proof of Theorem

The bound on the bias of the gradient estimate is given by the following lemma:

Lemma C.1. If the assumptions in Section 4.2 are satisfied, then for the gradient estimate gi used in Algorithm
4 and the gradient of the objective J(θ) given in equation 6, we have

‖E[gi]−∇θJ(θi)‖ ≤ KUHδ (18)

Proof of Lemma C.1. To prove that the bias is bounded, let’s consider for any i

‖E[gi]−∇θJ(θi)‖2

= ‖
H−1∑
t=0

Est∼dtπθi
[∇θπ(θi, st)

∇a(Ev∼BpQtπθi (st, π(θi, st) + δv)−Qtπθi (st, π(θi, st)))]‖2

≤
H−1∑
t=0

Est∼dtπθi ,v∼Bp
‖∇θπ(θi, st)‖2

‖[∇aQtπθi (st, π(θi, st) + δv)−∇aQtπθi (st, π(θi, st))]‖2

≤
H−1∑
t=0

KUδEv∼Bp‖v‖2

≤ KUHδ

The first inequality above is obtained by using the fact that ‖E[X]‖2 ≤ E‖X‖2, and the second inequality
using the K-lipschitz assumption on π(θ, s) and U -smooth assumption on Qtπθ (s, a) in a. Also, observe that we
interchanged the derivative and expectation above by using the assumptions on Qtπθ as stated in Section 4.2.

We will now show that the gradient estimate gi used in Algorithm 4 has a bounded variance. Note that the
gradient estimate constructed in Algorithm 4 is a one-point estimate, unlike policy search in parameter space
where we had a two-point estimate. Thus, the variance would be higher and the bound on the variance of such
a one-point estimate is given below

Lemma C.2. Given a gradient estimate gi as shown in Algorithm 4, the variance of the estimate can be bounded
as

E‖gi − E[gi]‖22 ≤
2H2p2K2

δ2
((Q+Wδ)2 + σ2) (19)

where σ2 is the variance of the random noise η̃.

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Proof of Lemma C.2. To bound the variance of the gradient estimate gi in Algorithm 4, lets consider

Ei‖gi − E[gi]‖22 = Ei‖gi‖22 − ‖Ei[gi]‖22 ≤ Ei‖gi‖22

=
H2p2

δ2
Ei‖∇θπ(θi, st)(Q

t
πθi

(st, π(θi, st) + δu) + η̃i)u‖22

≤ K2p2H2

δ2
Ei‖Qtπθi (st, π(θi, st) + δu)u+ η̃iu‖22

where Ei denotes expectation with respect to the randomness at iteration i and the inequality is obtained using K-
lipschitz assumption on π(θ, s). Note that we can express Qtπθi

(st, π(θi, st)+δu) ≤ Qtπθi (st, π(θi, st))+Wδ‖u‖2 ≤
Q+Wδ where we used theW -lipschitz assumption onQtπθ (s, a) in a and that it is bounded everywhere by constant
Q. Thus, we have

Ei‖gi − E[gi]‖22

≤ K2p2H2

δ2
Ei‖(Q+Wδ)u+ η̃iu‖22

≤ 2K2p2H2

δ2
(Ei‖(Q+Wδ)u‖22 + Ei‖η̃iu‖22

≤ 2K2p2H2

δ2
((Q+Wδ)2 + σ2)

We are now ready to prove theorem 4.2

Proof of Theorem 4.2. Fix initial solution θ0 and denote ∆0 = J(θ0) − J(θ∗) where θ∗ is the point at which
J(θ) attains global minimum. Denote ξi = gi − Ei[gi] and βi = Ei[gi] − ∇θJ(θi). From Lemma C.1, we know

‖βi‖ ≤ KUHδ and from lemma C.2, we know E‖ξi‖22 = V ≤ 2K2p2H2

δ2 ((Q + Wδ)2 + σ2) and Ei[ξi] = 0 from
definition. From θi+1 = θi − αgi we have:

J(θi+1) = J(θi − αgi)

≤ J(θi)− α∇θJ(θi)
T gi +

Lα2

2
‖gi‖22

= J(θi)− α∇θJ(θi)
T gi +

Lα2

2
‖ξi + Ei[gi]‖22

= J(θi)− α∇θJ(θi)
T gi

+
Lα2

2
(‖Ei[gi]‖22 + ‖ξi‖22 + 2Ei[gi]T ξi)

Taking expectation on both sides with respect to randomness at iteration i, we have

Ei[J(θi+1)] = J(θi)− α∇θJ(θi)
TEi[gi]

+
Lα2

2
(‖Ei[gi]‖22 + Ei‖ξi‖22 + 2Ei[gi]TEi[ξi])

≤ J(θi)− α∇θJ(θi)
T (βi +∇θJ(θi))

+
Lα2

2
(‖βi +∇θJ(θi)‖22 + V)

= J(θi)− α‖∇θJ(θi)‖22 +
Lα2

2
(‖∇θJ(θi)‖22 + V + ‖βi‖22)

+ (Lα2 − α)∇θJ(θi)
Tβi

≤ J(θi)− α‖∇θJ(θi)‖22 +
Lα2

2
(G2 + V +K2H2U2δ2)

+ (Lα2 − α)∇θJ(θi)
Tβi

Contrasting Exploration in Parameter and Action Space

≤ J(θi)− α‖∇θJ(θi)‖22 +
Lα2

2
(G2 + V +K2H2U2δ2)

+ (Lα2 + α)‖∇θJ(θi)‖‖βi‖

≤ J(θi)− α‖∇θJ(θi)‖22 +
Lα2

2
(G2 + V +K2H2U2δ2)

+ (Lα2 + α)GKUHδ

Rearranging terms and summing over timestep 1 to T , we get

α

T∑
i=1

‖∇θJ(θi)‖22 ≤ J(θ0)− ET [J(θT)]

+
LTα2

2
(G2 + V +K2H2U2δ2) + (Lα2 + α)GKUHTδ

≤ ∆0 +
LTα2

2
(G2 + V +K2H2U2δ2)

+ (Lα2 + α)GKUHTδ

T∑
i=1

‖∇θJ(θi)‖22 ≤
∆0

α
+
LTα

2
(G2 + V +K2H2U2δ2)

+ (Lα+ 1)GKUHTδ

≤ ∆0

α
+
LTα

2
(G2 +K2H2U2δ2 + 2GKUHδ)

+GKUHTδ +
LTα

2
V

≤ ∆0

α
+
LTα

2
(G+KHUδ)2

+GKUHTδ +
LTαK2p2H2

δ2
((Q+Wδ)2 + σ2)

≤ ∆0

α
+ LTα(G2 +K2H2U2δ2)

+GKUHTδ + 2
LTαK2p2H2

δ2
(Q2 +W 2δ2 + σ2)

Using ∆0 ≤ Q and optimizing over α and δ, we get α = O(Q 3
4T−

3
4H−1p−

1
2 (Q2+σ2)−

1
4) and δ = O(T−

1
4 p

1
2 (Q2+

σ2)
1
4). This gives us

1

T

T∑
i=1

‖∇θJ(θi)‖22 ≤ O(T−
1
4Hp

1
2 (Q3 + σ2Q)

1
4) (20)

D Implementation Details

D.1 One-step Control Experiments

D.1.1 Tuning Hyperparameters for ARS

We tune the hyperparameters for ARS (Mania et al., 2018) in both MNIST and linear regression experiments,
by choosing a candidate set of values for each hyperparameter: stepsize, number of directions sampled, number
of top directions chosen and the perturbation length along each direction. The candidate hyperparameter values
are shown in Table 1.

We use the hyperparameters shown in Table 2 chosen through this tuning for each of the experiments in this
work. The hyperparameters are chosen by averaging the test squared loss across three random seeds (different
from the 10 random seeds used in actual experiments) and chosing the setting that has the least mean test
squared loss after 100000 samples.

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Hyperparameter Candidate Values
Stepsize 0.001, 0.005, 0.01, 0.02, 0.03

Directions 10, 50, 100, 200, 500
Top Directions 5, 10, 50, 100, 200

Perturbation 0.001, 0.005, 0.01, 0.02, 0.03

Table 1: Candidate hyperparameters used for tuning in ARS experiments

Experiment Stepsize # Dir. # Top Dir. Perturbation
MNIST 0.02 50 20 0.03

LR d = 10 0.03 10 10 0.03
LR d = 100 0.03 10 10 0.02
LR d = 1000 0.03 200 200 0.03

Table 2: Hyperparameters chosen for ARS in each experiment. LR is short-hand for Linear Regression.

D.1.2 MNIST Experiments

The CNN architecture used is as shown in Figure 43. The total number of parameters in this model is d = 21840.
For supervised learning, we use a cross-entropy loss on the softmax output with respect to the true label. To
train this model, we use a batch size of 64 and a stochastic gradient descent (SGD) optimizer with learning rate
of 0.01 and a momentum factor of 0.5. We evaluate the test accuracy of the model over all the 10000 images in
the MNIST test dataset.

Figure 4: CNN architecture used for the MNIST experiments

For REINFORCE, we use the same architecture as before. We train the model by sampling from the categorical
distribution parameterized by the softmax output of the model and then computing a ±1 reward based on
whether the model predicted the correct label. The loss function is the REINFORCE loss function given by,

J(θ) =
1

N

N∑
i=1

ri log(P(ŷi|xi, θ)) (21)

where θ is the parameters of the model, ri is the reward obtained for example i, ŷi is the predicted label for
example i and xi is the input feature vector for example i. The reward ri is given by ri = 2 ∗ I[ŷi = yi] − 1,
where I is the 0− 1 indicator function and yi is the true label for example i.

For ARS, we use the same architecture and reward function as before. The hyperparameters used are shown in
Table 2 and we closely follow the algorithm outlined in (Mania et al., 2018).

3This figure is generated by adapting the code from https://github.com/gwding/draw_convnet

Contrasting Exploration in Parameter and Action Space

Experiment Learning Rate Batch size
MNIST 0.001 512

LR d = 10 0.08 512
LR d = 100 0.03 512
LR d = 1000 0.01 512

Table 3: Learning rate and batch size used for REINFORCE experiments. We use an ADAM (Kingma and Ba,
2014) optimizer for these experiments.

Experiment Learning Rate Batch size
LR d = 10 2.0 512
LR d = 100 2.0 512

Table 4: Learning rate and batch size used for Natural REINFORCE experiments. Note that we decay the
learning rate after each batch by

√
T where T is the number of batches seen.

D.1.3 Linear Regression Experiments

We generate training and test data for the linear regression experiments as follows: we sampled a random d+ 1
dimensional vector w where d is the input dimensionality. We also sampled a random d×d covariance matrix C.
The training and test dataset consists of d+ 1 vectors x whose first element is always 1 (for the bias term) and
the rest of the d terms are sampled from a multivariate normal distribution with mean 0 and covariance matrix
C. The target vectors y are computed as y = wTx+ ε where ε is sampled from a univariate normal distribution
with mean 0 and standard deviation 0.001.

We implemented both SGD and Newton Descent on the mean squared loss, for the supervised learning experi-
ments. For SGD, we used a learning rate of 0.1 for d = 10, 100 and a learning rate of 0.01 for d = 1000, and a
batch size of 64. For Newton Descent, we also used a batch size of 64. To frame it as a one-step MDP, we define
a reward function r which is equal to the negative of mean squared loss. Both REINFORCE and ARS use this
reward function. To compute the REINFORCE loss, we take the prediction of the model ŵTx, add a mean 0
standard deviation β = 0.5 Gaussian noise to it, and compute the reward (negative mean squared loss) for the
noise added prediction. The REINFORCE loss function is then given by

J(w) =
1

N

N∑
i=1

ri
−(yi − ŵTxi)2

2β2
(22)

where ri = −(yi−ŷi)2, ŷi is the noise added prediction and ŵTxi is the prediction by the model. We use an Adam
optimizer with learning rate and batch size as shown in Table 3. For the natural REINFORCE experiments,
we estimate the fisher information matrix and compute the descent direction by solving the linear system of
equations Fx = g where F is the fisher information matrix and g is the REINFORCE gradient. We use SGD
with a O(1/

√
T) learning rate, where T is the number of batches seen, and batch size as shown in Table 4.

For ARS, we closely follow the algorithm outlined in (Mania et al., 2018).

D.2 Multi-step Control Experiments

D.2.1 Tuning Hyperparameters for ARS

We tune the hyperparameters for ARS (Mania et al., 2018) in both mujoco and LQR experiments, similar to
the one-step control experiments. The candidate hyperparameter values are shown in Tables 5 and 6. We have
observed that using all the directions in ARS is always preferable under the low horizon settings that we explore.
Hence, we do not conduct a hyperparameter search over the number of top directions and instead keep it the
same as the number of directions.

We use the hyperparameters shown in Tables 7 and 8 chosen through tuning for each of the multi-step exper-
iments. The hyperparameters are chosen by averaging the total reward obtained across three random seeds
(different from the 10 random seeds used in experiments presented in Figures 3a, 3b, 3c) and chosing the setting
that has the highest total reward after 10000 episodes of training..

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Hyperparameter Swimmer-v2 HalfCheetah-v2
Stepsize 0.03, 0.05, 0.08, 0.1, 0.15 0.001, 0.003, 0.005, 0.008, 0.01

Directions 5, 10, 20 5, 10, 20
Perturbation 0.05, 0.1, 0.15, 0.2 0.01, 0.03, 0.05, 0.08

Table 5: Candidate hyperparameters used for tuning in ARS experiments

Hyperparameter LQR
Stepsize 0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.008, 0.01

Directions 10
Perturbation 0.01, 0.05, 0.1

Table 6: Candidate hyperparameters used for tuning in ARS experiments

D.2.2 Tuning Hyperparameters for ExAct

We tune the hyperparameters for ExAct (Algorithm 4) in both mujoco and LQR experiments, similar to ARS.
The candidate hyperparameter values are shown in Tables 9 and 10. Similar to ARS, we do not conduct
a hyperparameter search over the number of top directions and instead keep it the same as the number of
directions.

Hyperparameter Swimmer-v2 HalfCheetah-v2
Stepsize 0.005, 0.008, 0.01, 0.015, 0.02, 0.025, 0.03 0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.002, 0.003

Directions 5, 10, 20 5, 10, 20
Perturbation 0.15, 0.2, 0.3, 0.5 0.15, 0.2, 0.3, 0.5

Table 9: Candidate hyperparameters used for tuning in ExAct experiments

We use the hyperparameters shown in Tables 11 and 12 chosen through tuning for each of the multi-step
experiments, similar to ARS.

D.2.3 Mujoco Experiments

For all the mujoco experiments, both ARS and ExAct use a linear policy with the same number of parameters
as the dimensionality of the state space. The hyperparameters for both algorithms are chosen as described
above. Each algorithm is run on both environments (Swimmer-v2 and HalfCheetah-v2) for 10000 episodes of
training across 10 random seeds (different from the ones used for tuning). This is repeated for each horizon
value H ∈ {1, 2, · · · , 15}. In each experiment, we record the mean evaluation return obtained after training and
plot the results in Figures 3a, 3b. For more details on the environments used, we refer the reader to (Brockman
et al., 2016b).

D.2.4 LQR Experiments

In the LQR experiments, we constructed a linear dynamical system xt+1 = Axt + But + ξt where xt ∈ R100,
A ∈ R100×100, B ∈ R100, ut ∈ R and the noise ξt ∼ N (0100, cI100×100) with a small constant c ∈ R+. We
explicitly make sure that the maximum eigenvalue of A is less than 1 to avoid instability. We fix a quadratic
cost function c(x, u) = xTQx+ uRu, where Q = 10−3I100×100 and R = 1. The hyperparameters chosen for both
algorithms are chosen as described above.

For each algorithm, we run it for noise covariance values c ∈ {10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2, 5 ×
10−2, 10−1, 5 × 10−1} until we reach a stationary point where ‖∇θJ(θ)‖22 ≤ 0.05. The number of interac-
tions with the environment allowed is capped at 106 steps for each run. This is repeated across 10 random seeds
(different from the ones used for tuning). The number of interactions needed to reach the stationary point as
the noise covariance is increased is recorded and shown in Figure 3c.

Contrasting Exploration in Parameter and Action Space

Horizon Stepsize # Directions Perturbation
H = 1 0.15 5 0.2
H = 2 0.08 5 0.2
H = 3 0.15 5 0.2
H = 4 0.08 5 0.2
H = 5 0.05 5 0.2
H = 6 0.08 5 0.2
H = 7 0.08 5 0.2
H = 8 0.08 5 0.2
H = 9 0.1 5 0.2
H = 10 0.08 5 0.2
H = 11 0.08 5 0.2
H = 12 0.1 5 0.2
H = 13 0.08 5 0.2
H = 14 0.08 5 0.2
H = 15 0.08 10 0.2

Table 7: Hyperparameters chosen for multi-step experiments for ARS in Swimmer-v2

Horizon Stepsize # Directions Perturbation
H = 1 0.001 20 0.08
H = 2 0.008 5 0.08
H = 3 0.008 10 0.08
H = 4 0.003 5 0.05
H = 5 0.003 5 0.05
H = 6 0.003 10 0.05
H = 7 0.008 20 0.05
H = 8 0.008 5 0.05
H = 9 0.01 20 0.03
H = 10 0.005 10 0.03
H = 11 0.008 20 0.03
H = 12 0.005 5 0.05
H = 13 0.008 20 0.03
H = 14 0.01 10 0.03
H = 15 0.008 20 0.03

Table 8: Hyperparameters chosen for multi-step experiments for ARS in HalfCheetah-v2

Hyperparameter LQR
Stepsize 0.0001, 0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.008, 0.01

Directions 10
Perturbation 0.01, 0.05, 0.1

Table 10: Candidate hyperparameters used for tuning in ExAct experiments

Anirudh Vemula, Wen Sun, J. Andrew Bagnell

Horizon Stepsize # Directions Perturbation
H = 1 0.02 5 0.2
H = 2 0.02 5 0.2
H = 3 0.015 10 0.2
H = 4 0.015 10 0.2
H = 5 0.01 10 0.2
H = 6 0.015 10 0.2
H = 7 0.01 20 0.2
H = 8 0.015 20 0.2
H = 9 0.02 20 0.2
H = 10 0.008 5 0.2
H = 11 0.02 5 0.15
H = 12 0.02 20 0.2
H = 13 0.015 5 0.15
H = 14 0.02 10 0.15
H = 15 0.01 5 0.1

Table 11: Hyperparameters chosen for multi-step experiments for ExAct in Swimmer-v2

Horizon Stepsize # Directions Perturbation
H = 1 0.0001 20 0.2
H = 2 0.001 5 0.2
H = 3 0.001 5 0.2
H = 4 0.001 5 0.2
H = 5 0.001 10 0.2
H = 6 0.001 5 0.2
H = 7 0.001 10 0.2
H = 8 0.001 5 0.2
H = 9 0.001 5 0.2
H = 10 0.001 5 0.2
H = 11 0.0008 5 0.15
H = 12 0.001 5 0.2
H = 13 0.001 10 0.2
H = 14 0.001 5 0.2
H = 15 0.0008 10 0.2

Table 12: Hyperparameters chosen for multi-step experiments for ExAct in HalfCheetah-v2

