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Planning in Structured Environments
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Video from FANUC robotics Video courtesy of SBPL

Access to of the robot and environment dynamics
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But In unstructured environments, our
models are almost always inaccurate

Video from [Miki et. al. 2022] Video courtesy of Honeywell

Can we naively use inaccurate models and complete the task?
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Motivating Example

- - - E ._-:.-

Goal Location

S Start Location

—————————————————




Naively Using Inaccurate Model Leads to Failure

Start Location

We reach joint torque limits and cannot execute the same motion plan
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Objective

" Goal Location

Start Location

————————————————————r

Provably reach the goal online, despite having an inaccurate dynamical model,
without any resets

*Resets allow the robot to “reset” to a state, usually a previously visited state
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Running Example

H i HE EERIEEEE
H Li HE BEELSSS
HEEEEEE EEEEEND
] 3 HEEEEED
] 3 HEEEEES

HEEEEET HEEENNC

Environment Approximate Model



Desired Characteristics

1. No access to resets
2. Needs small number of executions to reach goal

3. Needs no prior knowledge



Related Work: Planning in Unknown Environments

e Model-based RL

Planning FExecution

 Use experience to
odel-free RL

e Model-free RL

« Use experience to Experience

. for model-free methods
[Sun et. al. 2019, Vemula et. al. 2019]

Model-based RL

Figure inspired from DYNA [Sutton 1994]




Running Example : Model-based RL

s | L] M ) ]
HELISSES NNl N

Model at time t Updated Model at time t+1




Related Work: Updating Dynamics of Model Online

. using online
experience [Sutton 1991, Barto et. al. 1995]

e Black-box simulators, interaction models,
motion primitives

 Dynamics of such models
online

 Need knowledge of model Is Inaccurate to
be efficient

Video borrowed from [Vemula et. al. 2017]
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Related Work: Learning (Residual) Models from Executions

e Learn a [Nagabandi et. al.
2019, Saveriano et. al. 2017]

 |arge number of samples, and
req U | red [Kearns and Singh 2002, Brafman et. al. 2002]

° IN model class [Joseph et. al. 2013]

* True dynamics are e.g.
defOrmable manipUIatiOn [McConachie et. al. 2020]

12 Videos borrowed from [Nagabandi et. al. 2019]



Related Work: Model-based Planning with Model-free Learning

. from model-based

planning with model-free learning nagavandiet. i
2017, Farshidian et. al. 2014]

 Use model-free learning in regions
[Lee et. al. 2020, LaGrassa et. al. 2020]

. - Inaccurately
modeled region or expert demonstrations

13 Figure and video borrowed from [Lee et. al. 2020]



Characteristics of our Algorithms - CMAX and CMAX++

v of the model
v Use online experience to

v Does

v to how the model is inaccurate and require no prior knowledge

- Requires restrictive assumptions on the model

14



Updating the Behavior of the Planner

 Used in practice to deal with inaccurate
modeling

 E.Q. (inflating) cost function

e Thesis answers

. to more general settings with less
assumptions

Video borrowed from [Zucker et. al. 2011]
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Concurrent and Follow-up Work

e CMAX for other domains such as

detormable manipulation mcconachie et. al.
2020, Mitrano et. al. 2021]

e Penalize when planning using learned
mOde|S [Power and Berenson 2021]

e Model-based Offline RL [Kidambi et. al. 2021]

Yios

il .aﬁl.‘ . "\

Video borrowed from [Mitrano et. al. 2021]
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Thesis Statement

)%

and not the dynamics of the model,

we can leverage simplified and potentially ]

and significantly required to complete the task

Interested in completing the task quickly and IN learning true dynamics

For real world tasks, there might be perfect model

17




Thesis Contributions

Model-Free RL Requires Effectiveness of Using
Large Number of Samples Inaccurate Models

CMAX : Bias Planner Away CMAX++ : Learn to Exploit
From Inaccurately Modeled Inaccurately Modeled
Regions Regions

Towms : Update Model to
be Useful for Planning

[Chapter 7 in Thesis]

[RSS 2020] [AAAI 2021]

ALGORITHMS



Thesis Contributions
ANALYSIS

Effectiveness of Using
Inaccurate Models

[Under review]

CMAX : Bias Planner Away CMAX++ : Learn to Exploit
From Inaccurately Modeled Inaccurately Modeled
Regions Regions

[RSS 2020] [AAAI 2021]

ALGORITHMS



Thesis Contributions

CMAX : Bias Planner Away
From Inaccurately Modeled

Regions

[RSS 2020]




Problem Formulation

Can be formulated as a problem M = (S, A, G, 7, ¢)

S : State space, A: action space, (3: Goal space
Cost function: ¢ : S X A — [0,]1]

Deterministic True Dynamics: f: SX A — S

A\

Access to Dynamics: f:SXA — S

*State is

*Goal can be reached from any state ( )

21



Incorrect Transitions

Transitions where true and approximate dynamics

f(s,a) # f(s,a) or ||f(s,a) — f(s,a)|| > &

2 CS X A =set of transitions

A is , and only discovered through online executions

22



CMAX: Key Idea

Instead of learning the true dynamics,
CMAX maintains a and

biases the planner to using incorrect transitions

23



Running Example : CMAX

ol L] ]
SENEEED

Environment

Approximate Model with incorrect transitions



CMAX : Algorithm

Move to t = t+1 Inflate c(s,, a,)

to a large value

If (s,, a,) is

While current RN LR oXe[ek] Execute

state s, is not a action a, to get

goal

S =SS a)

Else, move to t = t+1

25



CMAX: Task Completeness Guarantee

A . - set of incorrect transitions discovered so far

Assumption: There always exists a path from s, to a goal that

1.e.
(s,a) € X,

Under this assumption, the robot is
.e. CMAX IS



Summary

CMAX

1. Instead of updating dynamics, of incorrect transitions
2. CMAX updates to the dynamics of the model

3. "Use to bound computation
4. *Use to scale CMAX to large state spaces

*refer to thesis for more details

27



CMAX : Goal-Driven Behavior

Start Location

28



Outperforms Model-based and Model-Free Baselines
CMAX in large state spaces

Residual Model Learning using Neural Network

\ 4D Planar Pushing in presence

of obstacles

Steps \ Jo Success
\  CMAX
\Q-Learning
‘Model NN
Model KNN

Approximate Model Environment

Residual Model Learning using K-Nearest Neighbor
Regression

29



CMAX fails In repetitive tasks

Inaccurately
Modeled transition

Heavy Object

Obstacle

But by the 3rd repetition,
CMAX takes more than 500
steps to reach the goal as
previously executed incorrect

transitions have inflated costs

30



Can we allow the planner to
Incorrect transitions?



Thesis Contributions

CMAX++ : Learn to Exploit
Inaccurately Modeled

Regions

[AAAI 2021]



Modified Running Example

Obstacles

Sl EEE ESSaEEE
HEL NN

HEEEEED EEEEEEC

CMAX at first repetition CMAX at n-th repetition

s el
HEL NI

Environment

lce (Robot slips)

33



Modified Objective

Provably reach the goal online without any resets

allowing the path to



CMAX++: Key Idea

CMAX++ maintains of iIncorrect
transitions

and

Integrates them Into

35



Running Example

Obstacles

Sl EEE ESSaEEE

HELl B B BN SENN
HENEEE BEEEERESE
HENN HEEEEEC

N

Environment
Ice

CMAX++ at first repetition

36
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EEE=EEN

CMAX++ at n-th repetition




CMAX++ : Algorithm

Move to t = t+1 Update Q(s,, a,)

If (s,, a,) is

Q(s,a,) < c(s,a)+ V(s )

While current \EIR Execute

state s, is not a action g, to get
goal

S =SS a)

If Q-value is high, same behavior as CMAX

But if its low, allows planner to exploit

Else, move to t = t+1

37



CMAX++ : Major Limitation of Model-Free Estimation

CMAX++ estimating Q-values, and
like CMAX

e | L]

HEL AR

HEES S
38




Adaptive-CMAX++: Key ldea

Intelligently during execution to
combine advantages of both

39



Adaptive-CMAX++ : Intuition

* |f solution cost using CMAX is not far from CMAX++,

e Anytime-like: In early repetitions, IN later
repetitions

e Executions to estimate Q-values

o Strives to have good performance

40



Running Example

Obstacles

EHE BEE i
HEL SN
HEENES
HEEEEEE EEEEEED

A-CMAX++ at first repetition A-CMAX++ at n-th repetition

etk [T
EELNESE
EEE=EEN

Environment
Ice

41



Optimistic Model Assumption

Optimal value V* under approximate dynamics f the
optimal value V* under true dynamics f at all states

VE(s) < VE(s), Vs

Robot Is during execution

E.Qg. Free-space assumption in robot navigation [Nourbakhsh 1996]



Theoretical Guarantees

Completeness and Asymptotic Convergence

e Under Optimistic Model assumption, CMAX++ is guaranteed
> to be

> to as number of repetitions grow



Summary
CMAX++ and Adaptive-CMAX++

1. for incorrect transitions

2. Integrate

3. * during execution

4, " to scale algorithm to large state spaces

*refer to thesis for more details

44



7D Pick-and-Place with a Heavy Object

e [ arge state space - 7D arm configuration
* Object modeled as lightweight

* Can lift heavy object only in certain
configurations

* Repetition is successful if robot reaches goal
within 500 timesteps

Goal Pose

Start Pose

Heavy Object
Obstacle

45



Repelition—
P ST Sz | S | S | g | Sz
x| [ [
COwaxtt | [

ACwaxtt | [ | | |
Mode KNN [ | | | [
Mode NN | | | | | [
Qe || | |||

Model KNN : Residual Model learning using Regression
Model NN : Residual Model learning using Approximator

Q-learning: with carefully initialized value estimates

46



Repetition—

CMAX
CMAX++
A-CMAX++
Model KNN
Model NN

(Q-learning

17.8 3.4

17 +4.9
17.8 =34

40.6 = 7.3

50 == 16.2
172.4 175

% | 0
% |
0% | o | 7
% | 0
% | 0
0% | 0 ] |

Lower IS Better




Repeition->
Success Steps Success

007 | 13.6+05 | 607
007 | 11283 | 1007

A-CMAX++ | 17.8 3.4 | 100% 11.6 = 0.7 100% 10.6 =04 100%
Model KNN | 40.6 £7.3 100% 12.8 = 1.3 100% 124+14 100%

Model NN | 56 +£16.2 | 100%  208.2+92.1 | 80% || 37.5+20.1
172.4+75 | 100% & 232+10.3 | 80% || 10.2+0.6
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Performance in Last Repetition

CMAX++ CMAX



Thesis Contributions

Effectiveness of Using

Inaccurate Models

[Under review]




What is the of
CMAX-like methods, given an inaccurate
model?

and is it strictly better than naively using the model?



Iterative Learning Control (ILC) [arimoto et. al. 1984]
A CmAX-like approach

v Uses inaccurate model for control
v model dynamics
v directly

- Requires access to

for worst case performance analysis



Simplified Problem Setting

 Discrete-time Linearized Systems with fixed start X;,
X,.1 = Ax, + Bu,
. dynamics A B (e.g. from sysID)

A —All, <eqand [|[B—- B, < ep

H-1

Minimize sum of quadratic costs, J = Z xtTth + utTRut
=

* Linear Quadratic Regulator (LQR) sertsekas 2005

53



Optimal Controller in Closed Form

» For true dynamics A, B the optimal control is given by u* = K*x,

« Optimal cost-to-go from time 7 is given by xtTPt*xt

« Takeaway: Optimal and

» But we do not know A, B to compute this!

54



Naively Using Misspecified Model (Naive)

e Approximate dynamics A, B also linear

e Results In a and

e But suboptimal as A, B are approximate

e Sub-optimality gap:

H—-1
J=T* =) cR.it) — et u})
=0

55



Iterative Learning Control

1: controls ug.g—1 using A, B

Video from [Schoellig and D’Andrea 2009]

u — p— _
— 3 .1
Trial 1 |
E Y
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Iterative Learning Control

1: controls ug.g—_1 using fl, B
2: while not converged do
3: Rollout wg. g1 to get trajectory xo.g

Trial 1
L | -

Video from [Schoellig and D’Andrea 2009]

b
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Iterative Learning Control

1: controls ug.y_1 using A, B

2: while not converged do

3: Rollout ug.g—1 to get trajectory xo.g

4 arg mina, A, J(Ax, Au) subject to flAwt -+ EAut = AT

AH

IR VN P

X Updates computed using model around trajectory

58



Iterative Learning Control

controls ug.y_—1 using fl, B
. while not converged do
Rollout wp.7—1 to get trajectory xo.g
arg mina, Ay J(Az, Au) subject to AAz; + BAuy = Axyyq
Uo:H—1 = UQ:H—1 T CVAUO:H—l

St =

Never updating the model!

Trial 2.
a i s =i

Video from [Schoellig and D’Andrea 2009] 59




ILC Controller

« Converges to a with

o Still as we rely on model to compute updates

In the , IS ILC as bad as naively using approximate model?

610



Recursive Bounds

. Coarsely, J — J* <

* Naively using inaccurate model
Hﬁt il Pt*H <

 |terative Learning Control

”Pt il Pt*H <

- Takeawaly: terms are significant when €,, €p are

61



Case Study 1: Small Modeling Errors

« Small €4, €p

* Can ignore higher-order terms in Naive approach’s upper bound

A\

. worst case performance: J —J* ~J —J*

 Model is a very good approximation of real dynamics

62



Case Study 2: Highly Damped Systems

« Small ||A]l, i.e. state goes down to zero quickly

* The sub-optimality gap for ILC shrinks significantly:
|, — PX|| < O(1)
 The Nalve approach incurs IN higher-order terms:;
|P,— PF|l <10(ep)|+ ODI|IP,y — PL |l

e |LC focuses on

63



Case Study 3: Weakly Controlled Systems

« Small ||B]|, i.e. controls do not affect dynamics

e |LC error - robust to modeling errors in B
|P,— Pl < O(ey) + O(1 + eI Pyy — P2
e But the naive approach
|P,— PF|| < Olez+ €4+ €3) + O(1 + €4 + eD)IIP g — P2
* |LC realizes inefficacy of controls and

64



Experiments

1. Toy Linear Dynamical System with
2. Nonlinear Inverted Pendulum with

3. Nonlinear Quadrotor Control

Modeling Errors - ILC &~ Naive

Modeling Errors - ILC significantly better than Naive

65



Experiment 1

Toy Linear Dynamical System Large modeling errors - significant improvement

-xetz,uet

Linear Dynamical System with approximate model
N

A 1 106 — Naive

A — A -+ €I, B — B 4+ € ILC (closed form)

y

Lower 1s better

o
©
(@)
>
©
=
Q.
@)
e
>

8 0S
|
o

Small modeling errors -
10-2 107" 10°
Modeling Error €
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Experiment 2

. . . g Too large modeling errors
Inverted Pendulum with Misspecified Mass

Large modeling errors - significant improvement
* Nonlinear dynamics

Inverted Penawlumauith misspecifiad mass

e Unknown mass m Naive - N\
ILC

o))
-

Ul
o

e Access to model with

m = m + Am (misspecification)

SN
o

e Same trend in nonlinear systems!

O
O
(@)
>
it
g
= 30
O
@
®)
)
n
)
n
@)

Ldwer 1s bette

Small modeling errors - Mg 0.05” 0I0™ 015 020  0.25

Mass Misspecification Am
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Large modeling errors - significant improvement

Experiment 3

Planar Quadrotor Control in Wind
Small modeling errors -

* Nonlinear Dynamlcs Planar Quadrotor Controiin Wind

Naive el

« Dynamics affected by a wind force field Rtk e ~

( )

104

102

{

—2 .
10 Lower 1s better

O
(O
@)
>
+
(©
&
S
o
@)
O
>
(V)]
4
n
@)
O

0 2 4 6 8 10
Wind Magnitude

Video captured using simulator from Alex Spitzer
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Summary

On the Effectiveness of Inaccurate Models

* Nalve use can result in

o [LC

* Absence of

* For highly damped and weakly controlled systems

e |[LCis than naively using inaccurate models
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Thesis Contributions
ANALYSIS

Effectiveness of Using
Inaccurate Models

[Under review]

CMAX : Bias Planner Away CMAX++ : Learn to Exploit
From Inaccurately Modeled Inaccurately Modeled
Regions Regions

[RSS 2020] [AAAI 2021]

ALGORITHMS



Future Work Directions

1. for Planning and Execution
2. Extending CMAX and CMAX++ to

3. Performance Analysis

/1



Future Work Direction 1

Unified Framework for Planning and Execution

e Challenges:

1. Model Learning : Build models that

[Chapter 7 in Thesis]

2. Completeness with learned models
[Chapter 7 in Thesis]

. CMmAX, CMAX++ and

updating the model, during execution l\ -3

Video from [McConcachie et. al. 2020]
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Future Work Direction 2
Extending CmAX and CmAX++ to Stochastic Dynamics

e Challenges:

1. Planning: MDP planners, Stochastic
motion roadmaps atterovitz et. al. 2007]

Real Time, Pauses Removed

2. |lnaccurate Transitions: Maintain
[Kidambi et. al. 2020, Yu .//‘

et. al. 2020]

. L - .
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= —— » e . - )
~ ———— = . ' ey 2~ : e b -
- = = p " W L 2 - M
B v z / / vAY —c A g -
1 R . ’ i y / ” X
B g A . L7 d »
— = o >
X ¢ 7 : y
e £ - . 4 - -
- > y >~
e pr 4 o’ —-nt 3 .
~ . 7 .- e g .
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et [ i _r. ; 4
y 0 4 s X T ’ 2
: Sy O S5
¥ J o 4

Video from [Paolini and Mason 2016]
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Future Work Direction 3

Finite Data Performance Analysis

What performance can we expect using approximate dynamics and
from N rollouts?

» Regret w.r.t optimal robust controller K* across N rollouts ppeanet. a. 2019

N N
Regret = Z J: — Z J(K*)
i=1 i=1
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Conclusion

By

and not the dynamics of the model,

we can leverage simplified and potentially ,

and significantly required to complete the task
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Thesis Contributions

Model-Free RL Requires Effectiveness of Using
Large Number of Samples Inaccurate Models

CMAX : Bias Planner Away CMAX++ : Learn to Exploit
From Inaccurately Modeled Inaccurately Modeled
Regions Regions

Towms : Update Model to
be Useful for Planning

[RSS 2020] [AAAI 2021]
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Spectrum of approaches

Our goal-driven approach CmMAX

Update approximate Learn aresidual Learn a dynamical
dynamical model dynamical model model from scratch
Ensemble-CIlO [Mordatch et. al. 2015] TossingBot [Zeng et. al. 2019] MBPO [Janner et. al. 2019]
[Bagnell and Schneider 2001] PI-REM [Saveriano et. al. 2017] PDDM [Nagabandi et. al. 2019]
DYNA [Sutton 1991] [Rastogi et. al. 2018] RMAX [Brafman et. al. 2002]

e ——————————



Subtle case for CMAX assumption

W -



CmAX: Practical Algorithm for Large State Spaces

 Challenge 1: Planning to goal is expensive Gooes s
- Limited-expansion search as a planner ‘/
- Best action by backtracking from best leaf

«
after K expansions ‘ \b
- Update value estimates of expanded states



Limited-Expansion Search
Stage |: compute best action

Current State
Choose the next node to expand acc. to /
min g(s) + V(s)
scleaves e

Expanded Node

Leaf Node

g(s) = Cost-to-come to s from s,

V(s) = Estimate of cost-to-go (or value/heuristic) from s to any goal



Limited-Expansion Search
Stage |I: compute best action

Choose s, acc. to

min g(s) + V(s)
scleaves

K - Number of Expansions

O
4
4

Expanded Node
Leaf Node

Best leaf Node

Expand K states and choose the best leaf node

Backtrack from s, to 5; to get the best action a



Limited-Expansion Search
Stage ll: update value estimates

Value Backups to
all expanded states

Update value estimates of all the expanded states

V(Si) — 8 (Sbest) ;‘ V(Sbest) — 8 (Si)



CmAX: Practical Algorithm for Large State Spaces

e Challenge 2: Cannot maintain values and
incorrect set 7, as table

- Global Function Approximation for values:

V,:S - R,0€R"

- Local Function Approximation for X ;:
Hyperspheres and KD-Trees in S

Any state s inside hypersphere has its cost ¢(8, a) inflated




Failure Case




Theoretical Guarantees
under exact planning

e Assumption: There always exists a path from current state
s, to a goal state that is 0 distance away from any transition

that is known to be &-incorrecti.e. (s,a) € X f

e Guarantee: If initial value estimates are admissible and
consistent, the robot is guaranteed to reach a goal state in

at most | S \2 time steps. (Completeness)

e |f we do K = |S|expansions then, the robot is guaranteed
toreachin |S|(€(0) + 1) time steps



Proof Sketch

RTAA™ is guaranteed to reach the goal state

Assumption ensures that there always exists a path from
the current state to goal state in penalized model M o

Thus, CMAX Is also guaranteed to reach the goal

Number of steps to discover all incorrect transitions is

ST

Once we discover all, it will take a maximum of |S| steps
to reach the goal



Real-time statistics

e Robot takes 25 seconds to reach the goal with heavy
object (compared to 22 seconds for light object)

e Robot takes 32 seconds to reach goal with broken joint
(compared to 25 seconds for operational joint)



Experiment Detalls

4D planar pushing: 0 = 0.02, £ = 0.01, euclidean
distance, K = 5, N = 5 planning updates, Batch size 64,
adam optimizer (20 random seeds)

3D pick-and-place: K=3, 20x20x20 state space, 6 actions

7D arm planning: 0 = 1,£ = 1, y = 10 length scale, 1077
state space, 14 actions (10 random trials)

2D gridworld: 100x100 grid size (50 random seeds)



Simulated 4D Planar
Pushing with Obstacles

Accurate Model Inaccurate Model
Steps 90 Success Steps 90 Success
CMAX 63 £ 22 90% 192 + 40
Q-Learning 34 + 5 90% 441 + 100

Model NN 62 = 26 90% 348 + 82

Model KNN 106 + 34 95% 533 + 118
Plan with Acc. Model | 63 + 22 90% 364+53 | 8% |




/D Arm Planning with a
non-operational joint

AT start Connguration 4
'.r \‘ // ;- .
— s

‘

.
I'd
.

- l'_
—" '
e

Goal Location




/D Arm Planning with a
non-operational joint

/D Arm Planning with a broken joint

76 | 100%
138 + 65

ExaCt Planning without
any function
approximation



Does Global Value Function
Approximation Help?

Performance with varying length scale
in 7D arm planning

7D Arm Planning with Random Start
and Goal Configurations

0
<

Steps Jo Success
47 = 6 100%

=
i

138 &= 65 30%

S
—

Exact Planning without
any function
approximation

Number of timesteps to reach the goal

107 107t 10" 10t 107
Length scale v of RBF Kernel



Effect of the radius of
hypersphere on performance

Performance with varying radius
in 4D planar pushing

D N oL L N
- &L - O -
— S — S —

p—
T
S

Number of timesteps to reach the goal

0.01 0.02 0.04 0.06 0.08
Radius of the hypersphere 9



Experiment: 2D Grid World
efficient model update is possible

Model becomes more inaccurate

CED! 1551 £ 373 | 138 £ 10
Adaptive RTAA* 84 1015 = 230 137 4 10

3879 + 305 | 11803 + 2542 | 510 + 36

2D Grid World Navigation in the presence of obstacles

Model learning baseline _
Model becomes more inaccurate

CEY 231 £ 18 | 2869 £ 331

Adaptive RTAA* 78 + 4 219 + 18 2185 + 249
3914 + 303 | 1220 &+ 103 | 996 + 108

2D Grid World Navigation in the presence of ice




Concurrent work in Offline RL

 “Pessimism” based approaches
* MoREL (Rajeswaran et. al. 2020), MOPO (Yu et. al. 2020)
* |Importance of Pessimism (Buckman et. al. 2020)

* |nterpreting offline dataset as an approximate model



Advantages of CMAX

* Does not rely on knowledge of how model is inaccurate
* No need for approximate model to be flexible

* Applicable even in situations where modeling true dynamics is
Intractable

 Empirically requires significantly less number of online executions
to reach the goal



Shortcomings of CMAX

e Assumption Is restrictive and is not valid in some realistic tasks

e £.g. task of opening a spring-loaded door which is nhot modeled
as spring-loaded. There Is discrepancy In every transition and
CMAX as Is cannot solve it

 Fails to Improve quality of solution for repetitive tasks



Advantages of CMAX++ and Adaptive-CMAX++

* Exploit incorrect transitions without wasting executions to learn
true dynamics

* Useful in domains where modeling true dynamics is intractable,
e.g. deformable manipulation, or vary over time due to wear and
tear

* Optimistic model assumption easier to satisfy and performance
of CMAX++ degrades gracefully with accuracy of model reducing
to Q-learning



Limitations of CMAX++ and Adaptive-CMAX++

» Sequence {a;} requires tuning, but performance is reasonably
robust to a wide range of choices

 Assumption can be restrictive to satisty in domains where
designing an optimistic initial model is difficult

 However, infeasible to relax this assumption without resorting to
global undirected exploration



Related work : Model-based planning and model-free learning

o After 120 training episodes (and 90 minutes of training), GUAPO is able to
achieve 93% insertion rate

# Expert Demos: 1 S 10 20
Success Rate: | 7/21 | 15/21 | 16/21 | 19/21

Fig. 9. Overall success of our method on the shape insertion task depending
on the number of training samples. The first row 1s the number of training
samples used and the second row 1s the rate of success for the 21 trials.
Success and the experimental trials performed are explained in V-B




7D Pick-and-Place with a Heavy Object

Repetition— 1 5) 10 15 20
Steps Success Steps Success Steps Success Steps Success Steps Success

CMAX 17.8+3.4| 100% 13.6 = 0.5 60% 18 + 20% 1o + 20% 15+0 20%
CMAX++ | 17+4.9 100% | 14.2 + 3.3 100% 10.6 = 0.3 100% 11+0 100% | 10.8 = 0.1 100%
A-CMAX++ 178 £3.4| 100% }| 11.6 £0.7 | 100% 17+ 6 100% |10.44+0.3| 100% [ 10.6 +0.4 | 100%
Model KNN § 40.6 £ 7.3 | 100% 12.8 =1.3 100% | 29.6 £+ 16.1 100% | 15.8+£2.9 | 100% § 12.4+1.4 | 100%
Model NN |} 56 £ 16.2 100% ff 208.2 +£92.1 | 80% |[124.5+81.6| 40% 28 + 7.7 40% §137.5+20.1| 40%
Q-learning 172.4+75 | 100% § 23.2 +10.3 80% 20.5 £ 6.7 80% 18 = 2.8 80% 10.2 == 0.6 80%

Model KNN : Local model learning approach using KNN regression
Model NN : Global model learning approach using a neural network

Q-learning: Model-free baseline with carefully initialized value estimates



Exploration in Model-Free Policy Search

* Uses random exploration to estimate gradient

VQJ(Q) _ Vﬂ](@) V@ﬂ / Jacobian of policy

~

Estimate using action space exploration

1
Require O (—4) samples to converge to a e-suboptimal policy

€

 Exponential gap between model-free and model-based [sun et. al. 2019]

 Cannot be practically used without combining with a model-based procedure



Exploration in Model-Free Policy Search

« Number of samples required to reach 6 such that ||V9J(6’)H% <e€

d2
Parameter space exploration = O — samples
* €
| | p2H4
Action space exploration = O y samples

’ €
* For tasks with long horizon, exploration in parameter space is preferred

* |f parametric complexity required is large, exploration in action space is preferred

 Sample complexity requirement for model-free methods is very large and precludes them
from being applied on robots naively



Exploration in Model-Free Policy Search

Parameter Space Exploration Action Space Exploration
* Find a direction of improvement directly in parameter | ¢ Find a direction of improvement in action space
space through random exploration through random exploration
* Purely zeroth order approach  Leverage Jacobian of policy to update parameters
 Eg: Cross-entropy method, Evolutionary strategies, * A combination of zeroth and first order approach
Augmented Random search etc.  £Eg: REINFORCE and its extensions

Jacobian of the policy
| | e VeJ0) =V, J(O)Ver
Directly estimate using a zeroth order approach —
e.g. finite differencing

-stimate using a zeroth order approach

Analysis

: . - L
Linear Linear Contextual Bandit : Ave. Regret = —(E[} c;(6)] —min } c;(0))
Contextual Model-Free RL t=1 t=1

Model-Free RL : [[VoJ(0)||3 < € eps-stationary point

Dependence on parameter dimensionality
Parameter space Independent of horizon length

1 p? HA Dependence on horizon length
Action space O0(3) O(——(@*+0°Q))  Dependence on action dimensionality
Independent of parameter dimensionality




Experiments

MNIST Experiment

1.0 60lLinear regression with dimensionality 10 Linear regression with dimensionality 100 Linear regression with dimensionality 1000
r ——— ars ~— ars 25| e ars
0.8 50 —— reinforce 30 —— reinforce > —— reinforce
> @ ~—— sqgd ¢ 25 ~—— sgd 2 20 ~——— sqgd
@ 240 —— n_reinforce o —— n_reinforce o
§ 0.6 § newton },:, 20 newton g e
8 0.4 2 20 - o & 101
—— ars N - -
0.2 —— reinforce 10} 5 3
——— sqgd
0 0 0
0 2 4 6 8 10 102 108 100 108 102 108 10 108 100 10* 108
Number of samples (multiples of 10°) Number of samples Number of samples Number of samples
- : Plot of M Ret Hori L th H Plot of M Ret Hori L th H
« Our analysis explains the success of black-box e e arw O e HaliChoatahas
policy search methods like random search and 12 y
: : . 61.
evolutionary strategies in RL (OpenAl gym tasks 10} {———=
5‘
c c
/ 5 8 -
have very long horizons) : 24
o " " ] 6‘
+ For tasks with long horizons, exploration in 5 53
= 4 =
parameter space should be preferred: 2
2 ‘
: : : . —— ARS 1 —— ARS
If the parametric complexity required is large, N et . et

exploration in action space is better 2 4 6 8 10 12 14 2 4 6 8 10 12 14

Horizon Length H Horizon Length H



CMAX++ Algorithms

Algorithm 1 Hybrid Limited-Expansion Search

1: procedure SEARCH(s, M V0, X, K)

2:

[a—

11:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24

VP INHED

Initialize g(s) = 0, min-priority open list O, and

closed list C

Add s to open list O with priority p(s) = g(s)+ V (s)
for:=1,2,---, K do
Pop s; from O
if s; is a dummy state or s; € G then
Set Spest — S; and go to Line 22

fora € Ado > Expanding state s;
if (s;,a) € X then > Incorrect transition
Add a dummy state s’ to O with priority p(s’) =

9(s:) + Q(si,a)

continue X

Get successor s’ = f(s;,a)

If s’ € C, continue

if s € O and g(s") > g(s;) + c(s;,a) then
Set g(s’') = g(s;)+c(s;, a) and recompute p(s’)
Reorder open list O

else if s’ ¢ O then

Set g(s') = g(s:) + c(s4,a)
Add s’ to O with priority p(s’) = g(s’) + V(')
Add s; to closed list C

Pop Spest from open list O

for s’ € C do
Update V' (s") < p(Sbest) — 9(s’)
Backtrack from spect t0 S, and set apest as the first ac-

tion on path from s to spest 1n the search tree

return apest

Algorithm 2 CMAX++ and A-CMAX++ 1n small state
spaces

Require: Model M, start state s, initial value estimates
V, @, number of expansions K, t < 1, incorrect set
X < {}, Number of repetitions N, Sequence {c; >
1}V .| initial penalized value estimates V = V, penal-
ized model M + M

. for each repetitionz =1,--- , N do

t< 1,81 < s

while St ¢ G do )

Compute a; = SEARCH(s;, M, V,Q, X, K)

Compute &; = SEARCH(s;, M, V, Q, {}, K)

If f/(st) < a;V(s¢), assign a; = ay

Execute a; in environment to get s;11 = f(S¢, a¢)

if St+1 ?é f(St, CLt) then
Add (ss,a) tothe set: X < X U {(ss,a:)}
Update: Q(st,at) = c(s¢, at) + V(st+1)
Update penalized model M < My

t<+—t+1

SYP IR

e —
N =




Adaptive-CMAX++ : Maintain two sets of value estimates

« CMAX++ Value Estimates: V obtained without inflating costs and
using model-free Q-values

. CMAX Value Estimates: V obtained by inflating costs




Adaptive-CMAX++ : Algorithm

» Given a sequence a; > a, > -+ > ay = 1 where N is the number of
repetitions

« At time step ¢ in repetition i,

- If V(St) < a;V(s,)

» Execute CMAX action

Goal-driven in early repetitions

Optimal in later repetitions
- Else

» Execute CMAX++ action



3D Mobile Robot Navigation with Icy Patches

» Small state space (x, y, 0)

3D Mobile Robot Navigation Experiment

 Model has no icy patches and
the robot slips on ice

B CMmAX
0 I CMAXA++

-l

100 180 200
Lap

Average number of steps taken to flnlsh lap

10 randomly generated tracks




CMAX++ Experiment
details

-Car Experiment

*100 x 100 x 16 grid with 66 motion primitives
a; = 1 + f; with f; = 100 and p, is decreased by 2.5 after every 5 repetitions

K = 100 expansions

*PR2 Experiment

14 discrete actions, two in each dimension - 6DOF gripper pose + 1 redundant joint (forearm roll)

*10/\7 states
‘K =5 expansions, 6 = 3, & =0



Significance of Optimistic
Model Assumption

*Completeness guarantees require use of admissible and consistent value estimates

* The above requirement needs to hold every time we plan/replan
*Never discard a path as being too expensive when it is cheap in reality

Optimistic model assumption ensures that planning in the model always keeps value
estimates admissible and consistent

*E.g. Free space assumption in navigation



CMAX++ Proof Sketch :
Completeness

-Use worst case bounds of Q-learning
*RTAA* with optimistic model assumption is guaranteed to be complete
*Model being inaccurate everywhere reduces to Q-learning

-Under CMAX assumption, the bound is tighter



CMAX++ Proof Sketch :
Asymptotic Convergence

*Again, derived from Q-learning and LRTA* asymptotic convergence proofs

-Under CMAX assumption, only guaranteed to converge to the optimal path in penalized
model



Planning using Inaccurate Model and Q-values

* Create a dummy state for the
successor of an incorrect transition

 Compute priority of dummy state as

cﬁc()‘;lg T Q(Sl’ a) where Sy Is the parent Incorrect transition (s, Cy

e |f dummy state is ever chosen as the
next state to be expanded, then
terminate search and return dummy p(s) = g(s;) + O(sy, a)
state as best node



Incremental Model Learning

| WR, LWPR, LGR - local incremental methods

*Promise of model-KNN

»Dealing with discrete and continuous state spaces - so far have dealt primarily in continuous
Right state space for planning and learning dynamics

*GP for model uncertainty - optimize for mean dynamics



Value-Aware Model
Learning

Minimize planning error and not prediction error

Qi1 < T;;Qk = r + yP*V, - value iteration where V,(s) < max Q,(s, a)

A

Start from Qo < r, and for each iteration k, solve IA’k = argmin | | (P — P*)‘A/k\ \%
PeM

Use P, to compute Qk+1, ‘A/kﬂ using Qk+1 — T;.;< 0, and ‘A/kH(S) = max Qk+1(s, a)
k

a

Can be extended to approximate value iteration

replace population version with empirical version from samples



Initial Ideas on guarantees
and combining methods

» Learn local incremental models on-the-fly
Early repetitions - not enough samples -> approximation errors
- _ater repetitions - enough samples -> can use updated model

»Guarantees using multi-heuristic framework, so that we ultimately only rely on optimistic
model assumption

-Switch similar to A-CMAX++ based on predicted cost-to-go with the bias as shown above



ILC for continuous
linearized systems

min max  J(K)
K1, Kr_1 || AA|[p<eA
A7 [[2<e)

Subject to  x;41 = (/th + Af)xt + (B’t + Afg)ut

* Dynamic game between player and adversary

-Player tries to minimize regularized cost using K, ---, K;_; while adversary maximizes
regularized cost using A?, A?



Potential Domains

- Deformable Manipulation (Rope Dragging) and Rearrangement planning

Start Image

Current Image
Overlaid with
Estimated Rope State
and Action (scale x2)

. @

. \ Goal Image

[Yan et. al. 2019]

-

~Goal C : Ct
«—W.r..—.-,.— |

[
— S
e
k

-
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e ——,

[King et. al. 2015]



Proposed Work #1 : Unified Framework

* Best of worlds: Update dynamics of model + CMAX + CMAX++



Proposed Work #1 : Unified Framework

* Best of both worlds: Update dynamics of model + CMAX + CMAX++
» Several challenges:

1. Data efficiency : Need incremental local model learning [Meier et. al. 2014]

Video from [Cowley et. al. 2013]



Proposed Work #1 : Unified Framework

* Best of both worlds: Update dynamics of model + CMAX + CMAX++
» Several challenges:
1. Data efficiency : Need incremental local model learning [Meier et. al. 2014]

2. Task-aware model learning : NOT learn true dynamics but build models
that help future planning [Farahmand 2018]

Video from [McConcachie et. al. 2020]



Proposed Work #1 : Unified Framework

* Best of both worlds: Update dynamics of model + CMAX + CMAX++
» Several challenges:
1. Data efficiency . Need incremental local model learning [Meier et. al. 2014]

2. Task-aware model learning : NOT learn true dynamics but build models
that help future planning [Farahmand 2018]

3. Completeness using learned models : what assumptions are required??



Proposed Work #1 : Unified Framework

» Best of both worlds: Update dynamics of model + CMAX + CMAX++
» Several challenges:
1. Data efficiency : Need incremental local model learning [Meier et. al. 2014]

2. Task-aware model learning : NOT learn true dynamics but build models
that help future planning [Farahmand 2018]

3. Completeness using learned models : what assumptions are required?

o Switch between CmAX, CMAX++ and updating the model, during execution



Proposed Work #2: Continuous Linearized Systems

* Discrete systems allow optimal planning but only asymptotic analysis

* Continuous domain allows more fine-grained analysis
Xip1 = A, + B,
« Nominal approximate dynamics At, I§t such that

A A » B
|1A, — A ||, <€ and ||B, — B,||, <L €

T
Minimize sum of convex costs along a finite horizon, J = Z c(x,u,)

=1



Proposed Work #2: Continuous Linearized Systems

 |[terative Learning Control (ILC)
 Compute update using nominal model gradients

» Evaluate using real world rollouts

Trial 1

l A

4

Video from [Schoellig and D’Andrea 2009]



Proposed Work #2: Continuous Linearized Systems

What performance can we expect using approximate dynamics and finite amount of
experience from N rollouts?

* Past work on infinite horizon, known dynamics [Agarwal et. al. 2019]

e QOur setting is ILC with approximate dynamics

» Regret w.r.t optimal robust controller K* across N rollouts [Dean et. al. 2019]

N N
Regret = Z J; — Z J(K*)
i=1 i=1



Timeline
e Spring 2021:

* Finish analysis of iterative learning control in continuous linearized systems
* Design and implement incremental task-aware model learning algorithm

e Summer 2021:

 Combine model learning algorithm with CmAX and CMAX++ creating the
unified framework

 Demonstrate framework on simulated and real robot experiments

* Fall 2021:

e Write and defend thesis



Thesis Contributions

Completed Work

Sample Complexity of CMAX : Biasing Planner CMAX++ : Leveraging

Model-free Values In
Model-based Planner

Exploration in Model-free
RL

Away From Inaccurately
Modeled Regions

[AISTATS 2019] [RSS 2020] (Under review)

Robust Control in

Combining model learning . . .
continuous linearized

methods with CMAX and

systems with model
CMAX++

uncertainty

Proposed Work



ILC and MM Controllers

—(R+B'P, B)"'BTP, A,

P, =0 +AszPz+1(1+ BtR_lBtTPt+l)_1At

A\

K,=—-(R+ EtTﬁHIEt)_lEtTpHIAt
f)t+1 = () "‘Aszm(I"‘ ErR_lérTﬁm)_lAr



ILC Analysis Assumptions

- Assumption 1: Assume (), (), R are P.D matrices, and smallest singular value
of R, o;(R) > 1

. Assumption 2: Optimal controller K* satisfies | |A,+ B.K* || < 1 — & for
somel<o<landalr=0,---, H—1

 Assumption 3: The matrix BtR_létT has eigenvalues that have non-negative
real parts forallt = 0,---, H — 1




ILC Analysis Lemmas

Theorem 6.3.1. Suppose d < n. Denote I' = 1 + max.{||A¢||, ||B:||, ||PZ||, ||Kf||}. Then under
Assumption 6.2.2 and if || K} — K¢|| < 2II%'|I forallt=0,--- ,H— 1, we have

H-1
Vo(@o) — Vi (zo) < dI||lzol|? ) eI Ky — K (6.3)
t=0

Lemma 6.3.1. If ||A; — Ai|| < €4 and ||B; — By|| < eg fort = 0,--- ,H — 1, and we have
|1Pr ., — PMY| < MY (ea,eB) for some function fMY. Then we have under Assumption 6.2.1
forallt=20,--- ,H—1,

|KF — K™|| < 14T %, (6.4)

where T' = 1 + max{||A:[|, || Bel|, || PE||, || K7} and e = max{ea, B, f41 (€a,€B)}-



ILC Analysis Lemmas

Theorem 6.3.2. If the cost-to-go matrices for the optimal controller and MM controller are
specified by {P;} and {P}MM} such that P}, = PMM = Q; then,

MM — —
1PF = PY| < AP IPEA NP CIBAI R les + IR [le)
+ 2|| Al Py llea + | Pryalle

2 MM
+cpy,, ([Adll + €a) "l Py — P | (6.5)
fort=0,---,H —1 where cpy,, € R is a constant that is dependent only on P} if €a,€p are

small enough such that ||Pf, — Poov |l < |Pfyll~t. Furthermore, the upper bound (6.5) is tight

up to constants that only depend on the true dynamics Ag, By, cost matriz R, and Pr ;.

Lemma 6.3.2. If HAt — Ayl| < €4 and ||B; — By|| < eg fort = 0,--- ,H — 1, and we have
|Piv1 — PSS < £l (ea, eB) for some function fi-5. Then we have under Assumption 6.2.1 for
allt=0,--- , H—1,

|KF — KFC|| < 6T, (6.6)

where T = 1+ max{||Ad|, | Bill, |\ P11, | KF |1} and & = max{ea, e, f155 (e, en)}-



ILC Analysis Lemmas

Theorem 6.3.3. If the cost-to-go matrices for the optimal controller and iterative learning control
are specified by { P}} and {P;"“} such that P}; = P}=“ = Q then we have under Assumption 6.2.3,

1PF = POl < AP I PEA P I Bl R e

| At [[[| P1 lles

ILC
+ ey || Ad (1 Aell + ea)[| Py — Pyl (6.7)
fort=20,---,H —1 where cpy,, € R™ s a constant that is dependent only on P}, | if ea,ep are

small enough that ||Pf., — PS|| < |Pf||™t. Furthermore, the upper bound (6.7) is tight upto
constants that depend only on the true dynamics Ay, By, cost matriz R, and P} .



Modeling Error only at first time step

A\

HAI A1H<€A HBI B1|‘<€B At_At,Bt_Bt,tzz,'”,H_l

J—J* < 0(1)(e, + €3 + €5+ €2)?

J—=J* < 0(1)(e, + €p)°

. . . p) 3 . g
When modeling errors €4, €g are large, higher order terms like €;€p, €, are significant



Inverted Pendulum Dynamics

X = 6’ Uu=—1 f = ’ —M
v me’? A

T = max(z,,;,, min(z,, ., 7))

For Naive, run ILQR using model for both forward and backward pass

For ILC, run ILQR using model for backward pass and the real system for forward pass



TOMS: Task-Aware Online Model Search

 Updates dynamics of model to optimize task performance, rather than
prediction error

» Environment M with unknown dynamicsf: S X A — S

. Access to misspecified model class & = {f,: SX A — S |0 € O)

» Misspecified => f & F - usually true in real world tasks

» Access to a planner P when given model fe results in a policy 7, that
optimizes cost-to-go in the model



TOMS: Task-Aware Online Model Search

« Crucially, we assume access to an optimistic model f()pt

« We would like to search in the space of model parameters ® to find the
model f, that results in policy z, with planner P that optimizes the true cost-

to-go V7(s;)
oV™(sy)
00

- Infeasible to compute the gradient as @ — V”"(s,) is highly nonlinear and
unknown

0 «— 6 —



Online Model Search Framework

Algorithm 16 Online Model Search Framework

Require: Initial state s;, Planner P, Initial Model 6, Dataset D = {}, Model update frequency
v E L
1: t < 1, m9 < P(fp)
2: while s; ¢ G do
3: Compute a; < mg(S¢)
Execute a; in M to get si11 = f(s¢, ar)
Upda,te D=DuU {(St, at, St——l)}
if ¢ is a multiple of v then
Update 8 < MODELSEARCH(D)
Update mp < P(fp)




Optimistic Off-Policy Evaluation

» To evaluate V”"(s,) given a dataset Y = {(s,, a,, 5,, ) }of executed transitions
in M is done as follows:

Algorithm 17 Optimistic Off-Policy Evaluation

Require: Policy my, Dataset D, start state s1, horizon H, Distance metric A, Distance threshold
pu=>0
1: Initialize § < s1, V™ (s1) < 0
2: fort =1 to H do
3: Compute a < 7my(8$)
Find (s¢,a¢,8¢41) < argming, , o\ep A((S,a), (s, a))

4.
D:
6:
7
8:
9:

10: if s € G then
11: break
12: return V7 (s;)




Derivative-Free Model Search

Algorithm 15 Model Search Using Derivative-Free Optimization [Jos—+13]

1: procedure MODELSEARCH(D)
2: Initial perturbation §**, minimum perturbation

§ + "™ planner P

™" start parameters 6, Initial state s,

3: while § > 6™ do

4: for each dimension of © do

5: while True do A A A
6: Compute {my-, mg, o+ } < {P(fo—s), P(fo), P(fo1s)}
7: Evaluate {V™e—, V70 V™ot }

8: if min(V™0— (s1), V™t (s1)) > V™ (s1) then

9: break

10: if V™-(s1) < V™ot (s1) then

11: 0<+6—0

12: else

13: 0« 6+o

14: 5+ 9

15: return 6




TOMS: Theoretical Guarantees

 Evaluation Guarantee: If state-action value function Q"¢ is L—lipschitz
under distance metric A for any policy x, then we have that the estimate

V7 satisfies
V7o(sy) < V™(sy) + LHu

» Task Completeness Guarantee: With ¢ = 0 and unlimited computation,
TOMS is guaranteed to reach a goal state if there exists at least a single

model in the model class & that is good enough to result in a policy that
can reach a goal in M



Mountain Car Domain

 Rock that decreases speed by ¢

« Dynamics: X, ; = X, + X, and
X1 =X, +u+ 0, cos(0,x,)

» Controlu € {—0.001,0.001 }

e Model Class
F = {(6)1392”6’1»‘92 c R}

» M uses 6, = —0.0025,0, = 3



TOMS Experiment 1

 MLE - optimizes prediction error Mountain Car Experiment

3000 f T
i —— MLE

TRUE

—— RBMS

CMAX

TOMS

» TRUE - Uses true dynamics

2500 f

« RBMS - Uses only the dataset & for
evaluation

2000 r

1500 |

« CMAX - penalizes any incorrect
transition

1000 |

Number of Steps to Reach Goal

e TOMS - Our approach that uses 500 b__l___i/ 1 i
optimistic evaluation z ™ "

0.0200 0.0225 0.0250 0.0275 0.0300
Model Class Misspecification (c)

o fopr uses 0 = — 0.0025,0, = 3 but

does not have rock



TOMS Experiment 2

* Optimistic - our approach

e Current - Uses the model evaluated
as the fallback model for evaluation

* Non-optimistic - Uses a non-
optimistic model as fallback for
evaluation

TOMS with different off-policy evaluation methods

—— TOMS Optimistic
TOMS Current
2000 - [ ——— TOMS Non-Optimistic

1500 [

1000 r

Number of Steps to Reach Goal

500 |

0.0200 0.0225 0.0250 0.0275 0.0300
Model Class Misspecification (c)



Simulation Lemma

Lemma 8.1.1 (Undiscounted Deterministic Dynamics Simulation Lemma). Let M, M’ be two
Markov Decision Processes with the same cost function. If we have a fized start state sg, a
deterministic policy m: S — A, and M, M' have deterministic dynamics f, f' : S x A — S. Then
we have,

o0

I (m) = Jar(m) + ) (s, mw(si")) + Vip (siia) — Vip (si) (8.1)
t=0

= Jar () + ) Vip(sisr) = Vip (f (st m(sth)) (8.2)
t=0

Vi (seh1) = Vip (f'(sg" m(s2"))) < Lllsghy — f/(s¢", m(sy)|

< L||f(sM, n(sM)) — £/ (sM, m(sM))|




