A Fast Solver for Trajectory Optimization with Non-Smooth Cost
Functions

Anirudh Vemula J. Andrew Bagnell
Robotics Institute, Carnegie Mellon University

1



Success of Trajectory Optimization
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Video from [Williams et. al. 2017]



Trajectory Optimization

T—1
min  £70e) + ) £ (x, 1)
=0

X0: 75U T—1

subjectto x,,., = x(x, u,)

. of { £, thl
 Compute gradients and use

 E.g. Newton’s method which has quadratic convergence!



But what If the cost functions are
?



Collision Avoidance Sparsity in Control

£ (x,u)=max(0, —d(x,)) A t(xt, ut) = Hut”l

0 dsafe

Signed Distance




Bang-Off-Bang Control for Satellite Rendezvous

C(x,u) = ||ull

-~

s O @& Ry
\ - s 4 A *.__ ___-. -
o o ALl 1 :.O o8 ﬂr,\:* \ : - : \ - »,_-\\ 7.“_.

'/__,-‘
."‘7\'.

Video from [Le Cleac’h and Manchester 2019]



Structured Non-Smooth Cost Functions

M
£ 1) = £ 1) + ) max{gi(x, u,), 8ix, u,)}
=1

. Functions {f;, g, g,},_, are all twice-differentiable and convex

e max operator makes the resulting

» All previous examples conform to this structure



Reduction to Simple Formulation

T—1
min  £p(x;) + Z CA(x,u,)
=)

X0: U0 T—1

M
C(x,u)=f(x,u)+ Z max { gti(xt, U,), gi(xt, u,)}
i=1

subjectto x., = k(x, u,)

Functions f, g, g, are

r;lei;lf(y) + max{g(y), &)}



Equivalent Problem

r;lei;lf(y) + max{g(y), &)}

min f(y) + max(0,g,(y) + 6,8,(y))
yeyY oeA,

A, is the and 0 = [0,,0,]' € A, implies @, + 0, =1and 8,6, > 0

as the term max @,g,(y) + 6,2,(y) is
oeA,



Regularized Objective

min f(y) + max(6,g,(y) + 6,8,())
yeY oeA,

minf(y) + max(6,g,(y) + 6,¢,(y) — n"KL(@| |6 "))
yeY veA,

At iteration k, add regularization term

KL@O||05 1) =0, 1o iw lo 9
= U1 108 oF-! 2 108 ok



A Two-Player Min-Max Game

min f(y) + max(6,g,(y) + 6,8,(y) — 7'KL(O| | 0" "))
yeY oeA,

Take a small gradient step to play

Play 0 € A,

€ Y that decreases objective

that maximizes objective

f

Player Adversary



Player and Adversary Updates

min f(y) + max(6,g,(y) + 6,8,(y) — n*KL(@O] | 0*~"))
yeY oeA,

e The iInner maximization can be

_ (y)
ok 1exp (%)

zl 19{‘ 1eXp(8()’))

n-

Hk

o Simplifying, we get

8>(y)
=)

min f(y) + n* log(é’k Fexp( (y)) + Hé‘_l exp(
=24 7’] "



TRON: Application to Trajectory Optimization

X, U _ o (X, U
min Z f(x,u) + n*log(6F! exp(g( t t)) 0! exp( 8%, 4)
X0:17:%0.T t—() 7] }’]k

),

subjectto x,., = k(x, u)

e Solve the above trajectory optimization problem with

» After obtaining x,.7, Uy.7—_ from iLQR, update ¢

 Repeat until a fixed number of iterations



TRON: Theoretical Guarantees

T—1
min £ (xp) + Z £ (x,u,)
=)

X0:7-U0- T—1

subjectto x., = x(x, u,)

» When dynamics x,, | = k(x,, u,) are , converges to

* With dynamics, convergence to

. Requires n* — 0 as k — oo



Control for a Differential Drive Robot

Plot of robot path 5 Plot of trajectory cost vs time
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£ (x,u) =max(0, —d(x,))




Sparse Control for a Surgical Needle

Angular speed vs time step Plot of trajectory cost vs time
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C(x,u) = ||ull



Bang-Off-Bang Control for Satellite Rendezvous

L1-norm of control input vs time step s Plot of trajectory cost vs time
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TRON works really well for trajectory
optimization problems with
functions

Thank you.

The code is available at https://github.com/vvanirudh/TRON
Full paper is available at https://arxiv.org/abs/2003.14393



https://github.com/vvanirudh/TRON
https://arxiv.org/abs/2003.14393

